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CHAPTER 1: INTRODUCTION 

The flowering plants, angiosperms, are a staggeringly diverse group of organisms.  

Their wide range of morphologies and complex biochemistry has allowed members of this 

group to spread across the planet into all but the harshest environments.  Plants, in many 

cases angiosperms, have long been critical for human success.  Humans have utilized plant 

material for food, shelter, tools, and medicine.  The majority of crops and most natural fibers 

are produced by angiosperms.  Given the incredible diversity of form the characteristics 

shared across angiosperms are predominantly related to reproduction: including ovules that 

are enclosed within a carpel, double fertilization leading to the formation of an endosperm, 

stamens with two pairs of pollen sacs, and features of gametophyte morphology and 

development.  Approximately 85% of angiosperms produce hermaphroditic flowers. This is 

believed to be the ancestral floral morphology.  Plants that have derived floral morphologies 

can be divided into one of two broad groups, depending on the segregation of reproductive 

organs.  If the female reproductive organ, the gynoecium is separated from the androecium, 

the male reproductive organs but a single plant produces both types of flowers the plant is 

said to be monoecious.  If the androecium and gynoecium are segregated to individual plants, 

such that each plant is unisexual and develops flowers with either androecia or gynoecia, 

they are said to be dioecious.  Within each group agronomically important crops can be 

found, such as the monoecious cucumber and maize, and the dioecious hops and spinach.  

Although monoecious and dioecious species roughly split the ~12% of angiosperms with 

unisexual floral morphologies; the groups are not monophyletic and are observed to have 

evolved independently multiple times (Renner & Ricklefs, 1995).  The evolution of dioecy 

and elucidation of the genetic underpinnings of sex determination is particularly important 
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for two somewhat interconnected reasons: 1) Compared to sex determination in animals 

such as D. melanogaster, C. elegans, and mammals, the sex determining processes in plants 

are understudied and 2) The recent evolution of dioecious species can give unique insight 

into the early evolutionary steps required for the development of sex chromosomes, which 

are so commonly observed in the aforementioned organisms.   Understanding how dioecious 

species evolved from a hermaphroditic ancestor has been an academic endeavor for over a 

century as Darwin (1877) penned “There is much difficulty in understanding why 

hermaphrodite plants should ever have been rendered dioecious”. 

Hermaphroditic flowers allow for the possibility of self-fertilization. This is helpful for 

sessile plants as it all but guarantees passage of their genes to the next generation however, 

it has long been known that inbred offspring are often less fit than outbred offspring.  This 

fitness depression, caused by inbreeding, is generally recognized as an important selective 

force driving the evolution of a dioecious species from a hermaphroditic ancestor 

(Charlesworth & Charlesworth, 1978a; Charlesworth & Charlesworth, 1978b).  In addition 

to inbreeding depression, a mechanism whereby individual flowers increase their 

meristemic fitness through specialization is important for the evolution of unisexual flowers 

from hermaphroditic gender morphs.  Such specialization theoretically can result in 

increased male and female reproductive success, respectively.  As such, unisexual flower 

development via monoecy or dioecy can be considered a reproductive success strategy 

similar in effect to strategies that regulate the initiation of flowering itself.  As a background, 

I will first briefly review the molecular regulation of inflorescence commitment, followed by 

the molecular basis of flower development, and finally strategies for the production of 

unisexual flowers. 
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Transition to Flowering 

 The sporophyte phase of an angiosperms life cycle can be divided into two growth 

stages, vegetative and reproductive. During vegetative growth, the plant utilizes the 

nutrients available to grow and store energy in preparation for the reproductive stage.  

Precisely timing the transition to flowering is important for sessile plants, as the production 

and maturation of flowers in many species must occur in a particular time frame and in 

favorable environmental conditions.  Flowering too early or too late could prevent an 

individual from being able to mate with another of its species or put it into competition with 

other species it normally avoids.  Many plants rely on pollinators to carry gametes to 

potential mates and improper floral development may interfere or prevent this interaction.  

Additionally, plants have internal signals that influence transition to flowering including age 

and nutrient availability which help to ensure proper flower development.  In order for the 

plant to transition to reproductive development a number of signaling pathways that 

respond to different external and internal conditions must interact synergistically to induce 

flower development.  Expression of FLOWERING LOCUS T (FT), FLOWERING LOCUS D (FD), 

and SUPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1) are considered the molecular signals 

that initiate the transition to reproductive development.  All of the internal and external 

signaling pathways ultimately influence the activation or repression of FT, FD, and SOC1.  

Once activated, these genes initiate expression of floral meristem identity genes that cause 

the tissue to develop into a flower. 

 The major external signals are interpreted by the light-sensing photoperiod pathway 

and the cold-sensing vernalization pathway.  Light is an extremely important external signal 

and plants have multiple detection mechanisms that inform the plant of the day/night cycle, 
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type of light (red, far-red, and blue), and intensity of light (Quail, 1998).  Plants utilize a five-

member family of photoreceptors named PHYTOCHROME A-E (PHYA-E) (Briggs et al., 2001) 

that detect and distinguish between red and far-red light, and a two-member photoreceptor 

family named CRYPTOCHROME1 and 2 (CRY1, CRY2) to detect blue light (Cashmore et al., 

1999).  The PHY A-E photoreceptors exist in two forms and convert between these forms 

depending on the light conditions. The Pr (r standing for red) form absorbs red light most 

efficiently and uses this energy to convert into the Pfr (fr standing for far red) form, while 

the Pfr form absorbs far-red light and converts to Pr.  Sunlight is a mixture of wavelengths 

including red and far-red light and during the day an equilibrium will develop between the 

Pr and Pfr configurations.  At night the Pfr form will slowly convert back to the Pr form, which 

is once again ready to detect sunlight.  The longer the dark period the more Pfr is converted 

back to Pr and in this manner the plant is able to determine length of night and day.  Long 

day plants are triggered to flower when the Pr:Pfr ratio is skewed towards Pfr; this is not 

because of an abundance of light but rather reduced time in darkness which limits the 

amount of Pfr that decays to Pr (Sharrock & Clack, 2002).  The photoperiod cycling of the 

phytochromes influences members of the PSEUDO-RESPONSE REGULATOR (PRR) family of 

transcription factors.  PRR1 (aka Timing of CAB Expression 1 or TOC1), PRR3, 5, 7, and 9 play 

a central role in maintaining the circadian clock which influences the expression of ~90% of 

the Arabidopsis transcriptome (Michael et al., 2008).  Two genes of particular interest with 

regard to the transition to flowering are CONSTANS (CO) (Koornneef et al., 1991; Putterill et 

al., 1995) and GIGANTEA (GI) (Fowler et al., 1999), which are the main transcription factors 

in the photoperiod and circadian clock pathways respectively.   
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 Throughout the day expression of CO mRNA slowly increases but is repressed by the 

transcription factors CYCLING DOF FACTORs (CDF) (Imaizumi et al., 2005) and DAY 

NEUTRAL FLOWERING (DNF) (Morris et al., 2010).  However, during the night its expression 

is promoted by MULTICOPY SUPRESSOR OF IRA 1 (MSI1) (Hennig et al., 2003) a chromatin 

remodeling enzyme and the transcription factor FLOWERING BHLHs (FBH) (Ito et al., 2012) 

leading to a nightly spike of CO mRNA.  The production of CO protein does not cycle in the 

same manner as its mRNA due to the daytime repression mediated by PHYB and HIGH 

EXPRESSION OF OSMOTICALLY RESPONSIVE GENES 1 (HOS1) (Lazaro et al., 2015) and the 

nighttime repression mediated by CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) (Jang et 

al., 2008) and SUPPRESSOR OF PHYA-105 (SPA) (Laubinger et al., 2006).  During short days 

the CO protein is not translated at significant levels even though the mRNA increases 

reaching a night time maximum.  In long day plants such as Arabidopsis and Spinacia, 

functional CO protein must accumulate to a threshold level in order to initiate a transition to 

flowering.  To accomplish this the aforementioned repressors must be nullified.  Under long 

day conditions CDF mediated repression of CO mRNA is removed by GI from the circadian 

clock pathway resulting in elevated levels of the CO mRNA during the extended daytime 

hours.  Additionally, GI can stabilize the CO protein.  The inhibitors of CO protein function 

PHYB and COP1/SPA are removed by PHYTOCHROME-DEPENDENT LATE-FLOWERING 

(PHL) and CRY1/2 respectively (Mockler et al., 2003; Liu et al., 2008).  PHL has been shown 

to interact directly with PHYB-CO protein complex and help prevent PHYB mediated 

destabilization of the CO protein (Endo et al., 2013).  In response to blue-light perception 

that is characteristic of long day ambient light, CRY1 and CRY2 repress the COP1/SPA 

complex which allows for an evening accumulation of CO protein.  The expression of CO acts 
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as the main signal integrator for the photoperiod pathway and is influenced by the circadian 

pathway in a GI dependent manner.  Once CO protein levels reach a threshold CO acts as a 

transcription factor that promotes the expression of FT, a potent transition to reproduction 

signal (Simon et al., 1996; Samach et al., 2000). 

Figure 1.1 – Photoperiod pathway to flowering overview.  CONSTANS (CO) mRNA slowly increases 

throughout the day but is inhibited by PHYTOCHROME red (Pr), CYCLING DOF FACTORs (CDF), and DAY 

NEUTRAL FLOWERING (DNF).  As the day proceeds Pr is converted to the far-red version, Pfr which 

triggers GIGANTIA (GI) in the circadian clock pathway.  The presence of Pfr and GI help remove the 

inhibition of COmRNA production.  CRYPTOCHROME 1 and 2 (CRY1 & 2) help CO protein accumulate in 

long day scenarios by removing the inhibitors CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) and 

SUPPRESSOR OF PHYA-105 (SPA).  Pfr is also involved in stabilization of CO protein which then activates 

the expression of FLOWERING LOCUS T (FT).  

 The plant’s ability to detect light mainly resides in the leaves and indeed this is where 

CO is translated and produced.  CO has been shown to be recruited to the FT promoter and 

initiate transcription, which is then followed by translation of FT mRNA within the leaf.  For 

induction of flowering to occur the shoot apical meristem (SAM) must receive signaling to 
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initiate the switch in developmental programing.  As FT is a major contributor to this shift in 

development and it is produced in the leaves, it must be transported from the leaf to the SAM 

and it has been observed that FT travels through the phloem (Corbesier et al., 2007).  Once 

FT is trans-located to the SAM it can form a heteroduplex with FD and activate expression of 

SOC1 which then activates genes that give inflorescence meristem identity to the tissue (Abe 

et al., 2005; Yoo et al., 2005).   

 SOC1 is a transcription activator that is critical in flowering time control.  SOC1 is 

observed to integrate pro-flowering signals from the photoperiod pathway briefly described 

above and also from the vernalization pathway.  Vernalization is a period of prolonged cold 

that is required by some plants for flowering.  In such plants, the individual is unable to 

flower or is delayed in doing so without a sustained drop in temperature. Vernalization 

prevents a plant from flowering during winter but allows a transition to flower in the 

following spring or summer.  The vernalization pathway controls the expression of 

FLOWERING LOCUS C (FLC), which is a repressive transcription factor (Michaels & Amasino, 

1999).  FLC expression is promoted by the FRIGIDIA complex and other complexes through 

the acetylation and methylation of histones associated with the FLC locus allowing FLC 

mRNA to be generated (Michaels & Amasino, 2001; Jiang et al., 2009).  When present, FLC 

prevents the expression of FT mRNA in the leaves and SOC1 activity in the SAM thus 

preventing the transition to flowering (Helliwell et al., 2006).  Cold temperatures repress the 

expression of FRIGIDA and promote the expression of PRC and HDAC complexes that modify 

the histones of the FLC locus and repress transcription (Michaels & Amasino, 1999; Sheldon 

et al., 1999).  Cold temperatures also stimulate the expression of COOLAIR and COLDAIR 

which represses FLC (Swiezewski et al., 2009; Heo & Sung, 2011) By repressing FLC mRNA 
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production a period of cold temperatures removes one of the inhibitors of FT expression and 

SOC1 action, which creates a permissive genetic environment for the transition to flowering.   

Figure 1.2 – Simplified vernalization pathway.  The expression of FLOWERING LOCUS T (FT) and 

SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) is repressed by FLOWERING LOCUS C (FLC) 

which must be removed before a transition to flowering can occur.  Cold ambient temperature is able to 

repress FLC expression by inhibiting the expression of FRIGIDA which activates FLC.  Cool temperatures 

also stimulate the expression of COLDAIR and COOLAIR which repress FLC.   

In addition to the aforementioned flowering pathways it has been observed that 

phytohormones and gibberellic acid (GA) in particular are able to promote a transition to 

flowering in A. thaliana.  The GA hormone is produced through a series of chemical reactions 

catalyzed by GAoxidases producing the biologically active species GA4.  The GA signal is 

perceived by the soluble GID1 receptor. Binding GA causes a conformational change allowing 

the receptor to bind regulators of the GA response, the DELLA family of transcription factors 

(Yamaguchi, 2008).  A subset of the GRAS domain transcription factors, the DELLAs have a 

conserved 17 amino acid DELLA motif near the N-terminal of the polypeptide (Willige et al., 

2007).  Instead of activating the expression of GA response genes DELLA transcription 

factors typically repress their targets by binding transcription activators of GA response 
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genes preventing them from initiating expression.  The GA-GID1-DELLA complex allows 

interaction with the F-box component of an E3 ubiquitin ligase complex (Fu et al., 2004).  

When both complexes interact, the DELLA transcription factor is poly-ubiquitinated at the 

DELLA residues.  Once poly-ubiquitinated the DELLA protein is targeted for degradation by 

the 26S proteasome (Fu et al., 2002; Dill et al., 2004). This removes the inhibition of the GA 

response genes.  Distortion of this DELLA domain prevents poly-ubiquitination and is the 

basis for many GA insensitive DELLA family mutations.   

One such target of DELLA repression is PIF4 (the gene product of PHYTOCHROME 

INTERACTING FACTOR 4) a transcription factor involved in thermosensory activation of 

flowering (Kumar et al., 2012).  PIF4 is produced in the leaves and under elevated 

temperatures is observed to promote the transcription of FT leading to transition to 

flowering.  In A. thaliana PIF4 and DELLA were observed to interact physically which blocked 

PIF4s ability to bind DNA targets (De Lucas et al., 2008).  Degradation of DELLA proteins 

allowed PIF4 to interact with DNA promoters of response genes.  Within the SAM, DELLA 

proteins were observed to interact physically with SQUAMOSA PROMOTER BINDING-LIKE 

(SPL) transcription factors which serve as an endogenous cue for the transition to flowering 

(Galvão et al., 2012; Yu et al., 2012).  As the plant matures SPLs accumulate in the SAM and 

promote the expression of SOC1 helping to initiate the shift to reproductive development.  

SOC1 in turn promotes SPL expression and a feed forward regulation loop is established 

(Jung et al., 2012).  The physical interaction between SPLs and DELLAs where observed to 

prevent SPLs ability to activate the expression of SOC1 (Yu et al., 2012). 
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Figure 1.3 – Influence of gibberellic acid and the DELLA transcription factors on flowering.  DELLA 

transcription factors are understood to inhibit the expression of PHYTOCHROME INTERACTING 

FACTOR 4 (PIF4) and SQUAMOSA PROMOTER BINDING-LIKE (SPL) which are upstream activators of 

FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) 

respectively (de Lucas et al 2008, Yu et al 2012).  DELLAs also inhibit the flowering signal integrators 

FT, SOC1, and LEAFY (LFY).  This inhibition is removed when the phytohormone gibberellic acid binds 

its receptor GIBBERELIN INSENSITIVE DWARF 1 (GID1) which causes the degradation of DELLAs. 

The main downstream target of SOC1 is LEAFY (LFY), a transcription factor that is 

necessary and sufficient for floral development (Schultz & Haughn, 1991).  Under short day 

ambient light LFY expression in the inflorescence primordia is low and unable to trigger a 

transition to flower development.  Long day ambient light stabilizes CO which activates FT 

that travels from the leaves to the SAM to activate SOC1 which in turn promotes LFY 

expression and increases LFY abundance past the threshold required for transition to 

flowering.  For this transition to occur the indeterminate growth of the meristem must be 

inhibited and the floral identity genes must be activated.  LFY is able to accomplish both of 

these requirements.  Indeterminate growth of the inflorescence meristem is maintained by 
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the expression of TERMINAL FLOWER 1 (TFL1) a transcription factor from the 

phosphatidylethanolamine-binding protein (PEBP) family that also prevents the expression 

of LFY and APETALA 1 (AP1).  AP1 is a MADS box transcription factor that is activated by 

LFY and important for transition to flowering.  Once LFY expression accumulates beyond the 

flowering threshold it promotes AP1 expression and both AP1 and LFY repress TFL1 causing 

a switch to determinate growth and endowing the tissue with floral identity.  From 

observations in lfy mutants in Arabidopsis, it was shown that AP1 is able to initiate a 

transition to flowering independent of LFY signaling. However, flowering was delayed 

significantly.  ap1 and lfy double mutants were observed to almost entirely lack flowers 

indicating a synergistic interaction between LFY and AP1 is required for proper flowering 

control.  LFY expression in turn activates a number of key transcription factors that give 

organ identity to the primordial flower tissue. 

Figure 1.4 – Interaction of flowering signal integrators.  Once FLOWERING LOCUS T (FT) is transported 

to the apical meristem it can activate the expression of SUPPRESSOR OF OVEREXPRESSION OF 

CONSTANS 1 (SOC1) which in turn activates LEAFY (LFY) and APETELLA 1 (AP1).  The expression of 

both LFY and AP1 is normally repressed by TERMINAL FLOWER 1 (TFL1) however, once initiated LFY 
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and AP1 are able to initiate each others expression as well as suppress TLF1.  LFY and AP1 are 

understood to activate the expression of ABC-class genes synergistically although LFY is the main ABC-

class expression initiator.  

Genetics of Flower Development 

 The hermaphroditic angiosperm flower is comprised of four organs: the sepals, 

petals, stamen, and pistil. These organs are produced from non-overlapping concentric 

whorls of tissue in the flower primordia. The outermost, or first whorl, produces sepals 

which are leaf-like structures that surround and protect the flower. The second whorl of 

tissue will produce the angiosperm petals. The most central whorls, the third and fourth, 

produce the reproductive organs. Stamens, the male reproductive organs, develop in the 

third whorl of tissue. Female reproductive organs, the pistils, are produced from the fourth 

whorl in the center of the flower. 

 Developed by Coen and Meyerowitz in the model organism Arabidopsis thaliana, the 

ABC model describes the genes responsible for flower organ identity (Coen & Meyerowitz, 

1991; Pelaz et al., 2000) and later expanded to the ABCE model (Honma & Goto, 2001; Pelaz 

et al., 2001). Combinatorial expression of genes from the different classes (A through E) 

result in developing different floral organs. All of the genes, with the exception of AP2, are 

members of the MADS-box family of transcription factors and contain a number of conserved 

domains.  The MADS-box involved in floral organ identification are Type II MADS proteins 

which share the MIKC domain structure (Ma et al., 1991).  The N-terminal MADS domain (M) 

is followed by the Intervening (I), Keratin-like (K), and C-terminal (C) domains.  The MADS 

domain is highly conserved and is required for protein-DNA interactions, the intervening 

domain is less conserved and distances the DNA binding domain from the others.  The 
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Keratin-like domain is well conserved and is required for protein-protein interactions while 

the C-terminal domain is highly variable and Is required for the protein to achieve its specific 

function.  In Arabidopsis, APETALLA 1 (AP1) is the A-class organ identity gene. The B-class 

genes are APETALLA 3 (AP3) and PISTALLA (PI). There is only one C-class gene, AGAMOUS 

(AG).  There are four E-class genes SEPALLATA 1-4 (SEP1-4) (Krizek & Fletcher, 2005; 

Smaczniak et al., 2012). 

All of these floral organ identity genes are targets of LFY activation and interact with 

each other to create specific domains of expression with sharp boundaries that determine 

which organs develop in which whorl (Busch et al., 1999).  The E-class genes are unique as 

they are expressed in all whorls of the developing flower primordia unlike the other MADS-

box genes whose expression is restricted in some manner.  SEP3 was observed to produce 

the most severe phenotype when mutated and is considered to be the most critical of the 

four (Pelaz et al., 2000; Pelaz et al., 2001).  Additionally, the SEP3 protein was observed to 

interact physically with other SEP proteins as well as with each of the A- through C-class 

proteins forming tetramers.  Expression of AP1 and AP2 are restricted to the first and second 

whorls.  In the first whorl AP1 and SEP3 form a tetrameric complex and canalize the tissue 

to become sepals.  AP3 and PI expressions are restricted to the second and third whorl.  

Within the second whorl, E-class, A-class and B-class expression overlap and this 

combination signals for petal organ identity.  AG expression is observed in the third and 

fourth whorls.  In the third whorl there is an overlap of E-class, B-class and C-class expression 

that grants stamen identity to this whorl.  Within the fourth whorl, of the floral organ identity 

genes, only C-class and E-class gene expressions are observed.  The C-class and E-class 

combinatorial expression confers carpel identity to the tissue.  The A-class and C-class genes 
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act antagonistically and inhibit each other’s expression creating a sharp, non-overlaping 

boundry in Arabidopsis (Irish, 2010).   

The function of the ABCE floral organ identity genes as well as the type of organ that 

results from the combinatorial interactions are well conserved in the angiosperms so far 

investigated.  However, not all angiosperms adhere to the expression pattern of the ABCE 

genes identified in Arabidopsis.  The tulip (Tulipa gesneriana) and lily (Lilium regale) flowers 

develop petal-like organs in the first and second whorl and do not develop sepals or sepal-

like organs (van Tunen et al., 1993; Winter et al., 2002; Otani et al., 2016).  The third and 

fourth whorls develop stamens and carpels respectively, as predicted by the quartet model.  

It was observed that the expression of B-class genes had expanded into the first whorl of the 

tulip and lily (Kanno et al., 2003) and the combination of A-class and B-class gene activity in 

the first whorl is responsible for the extra petaloid organs.  Another example of altered 

expression comes from observations in sorrel (Rumex acetosa) which develops sepals in the 

first two whorls, stamens in the third and carpels in the fourth (Ainsworth et al., 1995).  

Contrary to the expansion of B-class expression in tulip and lily the B-class expression in 

sorrel was observed to be limited to the third whorl (Ainsworth et al., 1995).  These 

observations lead to the development of the ‘shifting boundary’ model of flower organ 

development that hypothesizes that much of the observed floral diversity can be attributed 

to outward or inward shifts in B-class floral organ identity gene expression (Bowman, 1997; 

Albert et al., 1998; Theissen et al., 2000; Kramer et al., 2003). 
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Figure 1.5 – Overview of the initiation, interactions, and morphological result of ABC-class 

gene expression.  The floral integrator LEAFY (LFY) initiates the expression of APETALA 1 

(AP1), APETALA 3 (AP3), PISTILLATA (PI), AGAMOUS (AG), and SEPALLATA (SEP).  AP3 and PI 

are able to initiate each others expression which AP1 and AG inhibit each other.  These 

transcription factors interact physically to form heteroquartets, the members of the quartet 

determine the organ produced from the tissue in which the quartet is expressed. 

Hypothesized Evolution of Dioecy 

 The landmark 1978 Charlesworth and Charlesworth paper characterized the fitness 

requirements of mutations predicted to lead from an ancestral hermaphroditic population 

to a dioecious one.  The paper suggests that an initial recessive mutation occurs within the 

population and individuals homozygous for this mutation fail to develop male 

organs/gametes leading to an individual that produces flowers with only the female 

function.  As long as the obligate females in the population are fit enough to compete with 
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the hermaphrodites this population would be expected to maintain the male sterilizing 

recessive mutation.  Next, a dominant mutation is predicted to occur that suppresses the 

development of female organs or gametes leading to individuals that produce only male 

flowers.  Again, if this mutation is not deleterious and the male individuals are able to 

compete with the hermaphrodites of the population this mutation is expected to persist.  

Given the mutations described the population would contain: hermaphrodites that do not 

express the phenotype of either mutation; males that possess the dominate, female 

sterilizing mutation; females that possess the recessive male sterilizing mutations; and 

neuters which possess both the male sterilizing and female sterilizing mutations.  To avoid 

the generation of sterile individuals, the mutations responsible for unisexuality must become 

linked and recombination between these two mutations must be suppressed.  Due to the 

suppression of recombination the region of the chromosome that contains the unisexual 

mutations would be expected to accrue additional mutations creating unique non-

homologous segments that could expand and eventually generate cytologically 

heteromorphic sex chromosomes. 

Figure 1.6 – Evolution of dioecy from hermaphroditic ancestor.  Initially a recessive, male sterilizing 

mutation arises in a hermaphroditic species.  If the feminized mutant can compete with the 
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hermaphrodite morph a gynodioecious population emerges.  Next a dominate female sterilizing 

mutation is predicted to arise producing a triecious population if the resulting male individual can 

compete with the hermaphrodite.  The unisexual morphs could then outcompete the hermaphrodite by 

specializing in producing only one of the two sexes.  Recombination between the unisexual mutations 

can produce a sterile individual to avoid this outcome recombination between the mutations must be 

suppressed.  Once this is accomplished a dioecious population is the result. 

   Following approximately 40 years of scientific scrutiny, three major concerns with this 

model and its predictions have been identified. The model ultimately predicts the generation 

of cytologically distinct sex chromosomes, yet there are few examples of dioecious plants 

that have morphologically unique sex chromosomes (Charlesworth, 2002). The sterilizing 

mutations that impart sex are assumed to be independent, however, observation of floral 

development in dioecious species revealed that abortion of male or female organs typically 

occurs at the same developmental stage.  While this is not in contradiction of the theory, it 

does suggest that the mutations do not act independent of each other (Diggle, Pamela K et 

al., 2011). The model’s initial feminizing mutation would produce a gynodioecious 

population consisting of hermaphrodites and female individuals and predicts the evolution 

of a dioecious species from this sub-dioecious population. However, dioecious species are 

most often observed to have evolved from monoecious ancestors (Renner & Ricklefs, 1995). 

Research aimed at addressing these weaknesses and adapting the theory for the evolution 

of dioecy continues to this day. 

Evolution of dioecy does not need to originate directly from a hermaphroditic ancestor 

and an alternative hypothesis suggesting evolution from a monoecious ancestor, through a 

paradioecious intermediary, and finally establishing a dioecious population was developed 

during the 1970’s and 80’s (Lloyd, DG, 1975; Lloyd, 1980a; Webb, 1999; Renner & Won, 
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2001).  An advantage of this model is that monoecious species already possess gynoecium 

and androecium sterility mutations that are maintained in the population.  This avoids the 

generation and invasion of andro/gynoecium sterility mutations into a hermaphroditic 

population.  Additionally, monoecious species are not observed to have cytologically distinct 

sex chromosomes to harbor mutations for unisexualitiy but rather have evolved regulatory 

mechanisms to ensure coordinated expression of the sterility genes to avoid the production 

of sterile flowers.  Transition to paradioecy may then occur with gender specialization that 

skews the ratios of male and female flowers produced on an individual (Lloyd, D, 1975).  The 

two most likely selective forces involved in such a transition from a monoecious population 

are increased seed fitness as a result of an increased ratio of female to male flowers and a 

reduced rate of self-fertilization (Charlesworth & Charlesworth, 1978b).  Accumulation of 

gender specialization mutations would lead to a population of inconsistent males and 

females.  Individuals with inconsistent sex produce a majority of flowers displaying one 

sexual morph but a few flowers of the opposite gender.  Inconsistent females are not 

expected to be common as the few male flowers produced by an otherwise female individual 

are able to self-fertilize most if not all of the gynoecia (Charlesworth & Charlesworth, 1978b).  

Thus, inconsistent females not only negate the advantages of outcrossing but also incur a 

reduction in fitness due to inbreeding depression.  However, inconsistent males are less 

disadvantageous as maturing fruit produced from self-fertilization is less injurious so long 

as developing the supporting structures requires little energy allocation.  The resulting 

paradioecious population would be expected to include females and inconsistent males.  At 

this point any mutation(s) that removes the inconsistency of the male would thus render the 

population dioecious.  
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Figure 1.7 – Evolution of dioecy from a monoecious ancestor.  Monoecy depicted as joined male and 

female icons, inconsistent males and females represented by regular sized symbol with one of 

reduced size attached.  Given a monecious species, mutations that enhance male and female 

reproductive success would be expected to be selected for resulting in a population of 

inconsistent males, monoecious individuals, and inconsistent females.  It is suggested that 

inconsistent females would be rare, as a single male flower on an otherwise female individual 

could fertilize the majority of gynoecium thus reducing its fitness.  The females and inconsistent 

males are expected to continue to specialize and outcompete monoecious individuals at which 

point any mutation that removes the inconsistency would render the species dioecious.   

Early work investigating the unisexual development in monoecious and dioecious 

species found that the application of phytohormones was sufficient to cause a change in the 

sexual characteristics of treated flowers.  Although patterns can be seen, no hormone has 

been observed to be purely masculinizing or feminizing.  Gibberellic acid is typically 

masculinizing as observed in Solanum carolinense, Asparagus officinalis, and Cannabis sativus 
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(Atal, 1959; Amruthavalli, 1978; Lazarte & Garrison, 1980) but has a feminizing effect in 

Luffa acutangula, Hyoscyamus niger, and Zea mays (Resende & Viana, 1959; Bose & Nitsch, 

1970; Hansen et al., 1976b).  Auxin has a feminizing effect in Cannabis sativus, Silene pendula, 

and Cucumis sp. (Heslop‐Harrison, 1956; Heslop-Harrison & Heslop-Harrison, 1958; 

Chailakhyan, MK & Khryanin, V, 1978b; Malepszy & Niemirowicz-Szczytt, 1991), but is 

masculinizing in Mercurialis annua and Cleome spinosa (De Jong & Bruinsma, 1974; Hamdi 

et al., 1987; Durand & Durand, 1991). Ethylene has been studied extensively in curcubits and 

found to be feminizing (Atsmon & Tabbak, 1979; Yin & Quinn, 1992; Yin & Quinn, 1995; 

Trebitsh et al., 1997; Kahana et al., 1999; Krupnick et al., 1999; Mibus & Tatlioglu, 2004; 

Boualem et al., 2008; Martin et al., 2009) except for watermelon in which ethylene is 

masculinizing (Rudich, 1990).  Given this background, the mutation of a single gene 

controlling the expression of the pre-existing endogenous signaling mechanism of sexual 

determination would be sufficient to establish dioecy (Renner, 2016).  If this gene was 

located near the centromere where recombination is naturally suppressed, a single 

mutational event could render a dioecious species from a monoecious population.  This 

scenario may not be as far-fetched as it initially appears, for example in maize recombination 

is restricted to the ends of chromosomes (Rodgers-Melnick et al., 2015) and the 

recombinationally suppressed regions may include a large proportion of genes as in barley 

where ~20% of genes are found in non-recombining regions (Baker et al., 2014). 

Dioecious Spinach 

Cultivated spinach, Spinacia oleracea is found within the Chenopodiacea, a subfamily of 

the Amaranthaceae family.  Recent efforts to elucidate the phylogenetic relationships among 

the Chenopodes utilized sequence analysis based on a combination of chloroplast genes 
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(rbcL, rbcS, matK) and nuclear genes (UNUSUAL FLORAL ORGANS (UFO), AG, AP3, and PI) 

from multiple members of the subfamily (Naeger & Golenberg, 2016).  This analysis 

produced a phylogenetic tree with Chenopodium album, a hermaphrodite, as the most basal 

member from which two sister groups are derived.  One group is monophyletic and contains 

the dioecious spinach.  The sister group is monophyletic and termed the Blitum group which 

contain Blitum bonus-henricus a protogynecious hermaphrodite (pistil and stigma exposed 

initally, followed by the stamens) and Blitum nuttallianum and Blitum virgatum, both of 

which are gynomonoecious (producing hermaphroditic and pistillate flowers).  These 

observations indicate that dioecious S. oleracea likely evolved from a hermaphroditic 

ancestor.  

Dioecious species can be grouped into two classes based on the developmental 

mechanism that results in a unisexual flower (Mitchell & Diggle, 2005).  Type I unisexual 

flowers begin developing a perfect flower and become unisexual by terminating the 

development of the gynoecium (female reproductive organs) or the androecium (male 

reproductive organs), the developmental stage in which organ abortion occurs is species 

specific.  The flower of a Type II species is fated to become pistallate or stamenate during the 

transition to flowering or soon thereafter.  The flower primordia of a Type II species only 

initiates one type of sex organ and therefore does not require controlled organ abortion 

however, they are sometimes confused with very early aborting Type I species.  Spinacia 

oleracea L. is an example of a Type II dioecious species, thus unisexual flowers are initiated 

from primordia and can be identified visually (with the help of SEM) based on the 

development of the first whorl.  Female S. oleracea flower primordia develop two large sepals 

from the first whorl of organs that overgrow and protect the developing ovules very quickly.  
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Male S. oleracea initiate four sepals that surround but do not overgrow the stamen primordia 

until later in flower development.  Unlike many angiosperms spinach, regardless of sex, do 

not produce petals at any point in flower development.  As the female flower matures the 

two sepals continue to cover the stigma while the lower third of the sepals may fuse together.  

Tendril like stigma protrude past the sepals to catch pollen.  By the time the male flower is 

observable with the unaided eye, the four sepals have overgrown the stamen that develop in 

an opposite phyllotaxic pattern.  As the stamen mature, they force open the sepals and 

rapidly elongate the filament just before releasing pollen (Sather, D Noah et al., 2005).  

At the molecular level, sex can be determined based on expression of B-class genes in 

the inflorescences which is male specific.  B-class gene expression is observed very early and 

throughout the flower primordia before any organs can be distinguished.  As development 

progresses, the expression pattern of SpAP3 and SpPI become restricted to the stamen 

primordia (Pfent, Catherine et al., 2005).  As the anther locules develops expression of SpAP3 

and SpPI is observed in the tapetum and microsporangia (Pfent, Catherine et al., 2005).  No 

expression of either B-class gene was observed via in situ hybridization in female flowers at 

any time during development.  However, weak signal was observed in female inflorescences 

via norther blot for SpAP3 but no expression was observed for SpPI (Pfent, Catherine et al., 

2005).  The expression pattern of the C-class SpAG in male flowers is observed in the floral 

primordia which is then restricted to the stamen at later stages (Sather, D Noah et al., 2005).  

As the anther locules develop SpAG expression is observed in the mircosporangium but not 

the tapetum (Sather, D Noah et al., 2005).  During female flower development SpAG was 

observed in the flower primordia and then restricted to the carpel and girdle tissues.  As the 

organ primordia develop, the girdle tissue surrounds the ovule, eventually forming the ovary 
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wall and pistil from which the stigma will emerge.  As development continues SpAG 

expression is restricted to integument within the ovule and is not seen in the ovary wall or 

girdle tissue (Sather, D Noah et al., 2005).  Although expression of B-class genes is male 

specific, sequence analysis revealed no allelic differences between male and female copies of 

both SpAP3 and SpPI (Sather et al., 2010).  Similarly, no allelic differences were observed 

between male and female copies of SpAG (Naeger & Golenberg, 2016).   

Altering the expression of spinach B- and C-class genes through viral induced gene 

silencing (VIGS) illuminated the roles of each class of organ identity gene.  Knocking down 

expression of SpAG produced a lack of flower determinacy resulting in an excess of whorls 

in both male and female spinach, which is consistent with AG function observed in A. thaliana 

(Sather et al., 2010).  In both males and females, the extra whorls typically developed into 

sepals as C-class function is not required to produce sepals.  In females no carpels were 

observed to develop which is consistent with the ABCE model and in males flattened 

structures did develop but no pollen or anthers were produced (Sather et al., 2010).  

Knocking down B-class expression in females had no phenotypic effect. However, in males 

this did not result in the generation of sterile flowers but caused homeotic and gender 

transformations.  Without B-class expression males with homeotic transformations were 

observed with one or more stamen converted into carpels.  Additionally, some males 

developed wild-type stamen but produced a carpel in the central whorl (Sather et al., 2010; 

West & Golenberg, 2018).  A few males were observed to produce the characteristic four 

sepals, a carpel in central whorl, but no stamens.  Wild-type female flowers were also 

frequently observed in knock-down treated male plants (Sather et al., 2010; West & 

Golenberg, 2018).  These results indicate that spinach B-class genes have a novel function 



www.manaraa.com

24 

 

required to suppress the development of carpel tissue in addition to their canonical 

functions.  These observations showcase the importance of properly controlling the 

expression of B-class genes in spinach and that altering this expression can alter the sex of 

the individual. 

Genetics of Sex Determination in Spinach 

Spinach is typically dioecious with an even ratio of female to male individuals however, 

monoecious individuals do naturally occur although with much variety in staminate to 

pistillate ratio both within and between monoecious individuals, in addition perfect flowers 

are observed although very rarely (Rosa, 1925).  The dioecious character was believed to be 

controlled by a single locus on chromosome 1 wherein females are homozygous (XX) and 

males heterozygous (XY) (Janick & Stevenson, 1955).  The Y chromosome was observed to 

be active where a single copy is sufficient for male determination regardless of the number 

of X chromosomes that accompany the Y (Mahoney et al., 1959).  This single locus method of 

gender determination is adequate for the explanation of dioecy in spinach but not for the 

natural occurrence of monoecy and quite insufficient for the sexual plasticity observed as a 

result of environmental factors (Thompson, 1955).  Multiple hypothesis were proposed to 

explain monoecy (Sugimoto, 1947; Bemis & Wilson, 1953b) however, Janick and Stevenson 

(1955) showed experimentally that monoecy is controlled by a partially dominant allele (Xm) 

of the sex determining XY factor.  The Y allele is dominant to X and Xm causing the 

development of staminate flowers.  The partially dominant Xm allele when homozygous 

produces monoecious individuals that have a male skewed flower ratio.  While in the 

heterozygous arrangement (X Xm) a monoecious individual with a female skewed flower 

ratio is observed.  However, when testing the three allele hypothesis in another variety of 
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spinach Iizuka and Janick observed the P.I. 169671 variety would produce completely 

staminate plants when homozygous for the Xm allele (Iizuka & Janick, 1962).  To account for 

these data the three allele, one locus hypothesis must be altered to include a variety of Xm 

alleles that differ in the ability to induce maleness.  Alternatively, this observation could also 

be explained by a two locus system in which the X/Y function is modified by an independent 

gene (M) that influences the monoecious character.   

Recent efforts using multiple marker-based analysis have been focused on determining 

which of the two hypotheses are correct.  Using a combination of microsatellite, amplification 

fragment length polymorphism (AFLP) and sequence-characterized amplified region (SCAR) 

markers a map of chromosome 1 was constructed (Khattak, JZ et al., 2006; Onodera et al., 

2008; Onodera et al., 2011; Yamamoto et al., 2014).  Utilizing the newly created markers and 

through a series of careful breeding strategies the data suggested that indeed the M locus 

was independent but linked to the X/Y locus (Yamamoto et al., 2014).  The recombination 

frequency between M and the X/Y locus was observed to be approximately 12% and M was 

located in a 7.1cM region between SP_0008 and SP_0022 SCAR markers (Yamamoto et al., 

2014).  The Y allele was observed to co-segregate with markers T11A and V20A in 677 

(Akamatsu et al., 1998) and 415 (Yamamoto et al., 2014) plants, suggesting recombination 

is severely repressed at that locus.  To characterize the male determining region a BAC 

library was created and then parsed using T11A, V20A, and three additional non-

recombining markers in coupling phase with the Y allele (Kudoh et al., 2018).  None of the 

BAC clones in the library were positive for more than one of the markers thus five BAC 

contigs were assembled, one contig per marker. The size of the contigs ranged from 106kb 

to 180kb and covered a total length of 692kb (Kudoh et al., 2018).  Sequence analysis of the 
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BAC clones revealed only ~4% of the BAC library was homologus to none or one other 

segment of the spinach draft genome indicating a high level of repetitive sequence and low 

gene content.  Indeed, gene prediction analysis produced only 45 potential open reading 

frames, 14 of these had no homology to any sequence in the NBCI non-redundant protein 

database and the rest were either uncharacterized, hypothetical, or retroelement related 

(Kudoh et al., 2018).  The identity of the X/Y sex determining gene and monoecious gene will 

likely remain unknown for some time given the difficulty of sequencing highly repetitive 

genomic areas, increasing marker saturation may help in this endeavor.  

While we eagerly await identification and characterization of genes associated with the 

aforementioned markers this does not preclude us from investigating how unisexual flower 

are produced in spinach.  This has been the focus of my doctoral thesis and the opening 

chapter sheds light on the regulatory genes involved in unisexual development and 

hypothesizes a mechanism to explain the selective activation of spinach B-class genes.  To 

better understand the suite of genes deferentially expressed between the gender morphs 

transcriptome analysis was performed and will be reported here.  Additionally, the last 

chapter reports an early unfinished project that sought to characterize any physical 

interactions between the transcription regulators proposed to be involved in unisexual 

flower development. 
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CHAPTER 2: GENDER SPECIFIC EXPRESSION OF GIBBERELLIC ACID INSENSITIVE IS 

CRITICAL FOR UNISEXUAL ORGAN INITIATION IN DIOECIOUS SPINACIA OLERACEA L. 

This chapter has been published 

Nicholas W. West, Edward M. Golenberg, Gender Specific Expression of GIBBERELLIC ACID 

INSENSITIVE is Critical for Unisexual Organ Initiation in Dioecious Spinacia oleracea.  New 

Phytologist 2018 doi: 10.1111/nph.14919 © 2018 New Phytologist Trust 

ABSTRACT 

• While unisexual flowers have evolved repeatedly throughout angiosperm families, 

the actual identification of sex determining genes has been elusive, and their 

regulation within populations remains largely undefined. Here, we test the 

mechanism of the feminization pathway in cultivated spinach, and how this pathway 

may regulate alternative sexual development. 

• We tested the effect of GA on sex determination through exogenous applications of 

GA and inhibitors of GA synthesis and proteasome activity.  GA concentrations in 

multiple tissues were estimated by ELISA analysis.  Gene function and pathway 

analysis were tested through VIGS mediated gene silencing. Relative gene expression 

levels were estimated by qRT-PCR. 

• Inhibition of GA production and proteasome activity feminizes male flowers.  

However, there is no difference in GA content in tissues between males and females.  

We characterized a single DELLA transcription factor gene (SpGAI) and observed 

inflorescence expression in females two-fold higher than in males.  Reduction of 
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SpGAI expression in females to male levels phenocopies exogenous GA application 

with respect to flower development.  

• These results implicate SpGAI as the feminizing factor in spinach, and suggests the 

feminizing pathway is epistatic to the masculinizing pathway.  We present a unified 

model for alternative sexual development and discuss the implications to established 

theory.  

INTRODUCTION 

The concept of sex determination in angiosperms is complex.  The hermaphroditic 

flower is generally considered to be the ancestral state of all extant flowering plants.  As such, 

genes that regulate the developmental pathways that lead to sporophytic sexual organs, the 

stamens and pistils, to alternative gametophytes, the pollen grains and the 

megagametophyte, and to the actual gametes themselves, the sperm and eggs, are present 

and shared among species.  Sex determination that leads to the production of unisexual 

flowers, whether in monoecious or dioecious species, must therefore be investigated in 

terms of the alternative expression of genetic modules that control the development of these 

structures rather than in terms of the genes themselves alone. 

Given that the presence of both sexual organs and functions in a single flower is 

ancestral, the evolution of unisexuality is best thought of as the accumulation of mutations 

that ultimately suppress the production of alternative sexual gametes from a single 

meristem.  Specifically, for the evolution of dioecy from hermaphroditism, at least three 

mutations are required, one to suppress gynoecium development, another to suppress 

androecium development, and lastly a mutation to suppress recombination between the 
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previous two (Charlesworth & Charlesworth, 1978).  Suppression of recombination between 

the two sterilizing mutations is necessary to avoid producing sterile offspring.  This is 

commonly thought to be caused by a chromosomal inversion, however, other modifiers that 

reduce recombination between such loci may also occur.  Chromosomal regions with 

suppressed recombination that also segregate with sex would therefore be primary 

candidates for the location of sex determining mutations.  The suppression of recombination 

and the reduction of effective population size are theoretically thought to lead to Y (or W) 

chromosome degradation, and, ultimately, to heteromorphic chromosomes (Charlesworth & 

Charlesworth, 2000).  Identification of these regions is somewhat straightforward in 

unisexual species with heteromorphic sex chromosomes such as Silene latifolia 

(Westergaard, 1958) that use an XY system, but not simple in species with proposed 

homomorphic sex chromosomes such as Spinacia oleracea (Bemis & Wilson, 1953a; Khattak, 

JZ et al., 2006).  Regardless of sex chromosome morphology, identification of genes predicted 

to be within non-recombining regions is difficult as these regions tend to accumulate 

repetitive DNA elements.  Silene is the best studied of genera with heteromorphic 

chromosomes and although its Y chromosome harbors numerous intact genes, some with X-

linked counterparts, few of these genes are observed to have floral development function 

(Matsunaga, 2006).  Among those genes found on the Y chromosome and known to be 

involved in flower development are an APETALLA 3 orhtolog (Matsunaga et al., 2003; 

Nishiyama et al., 2010), two SEPALLATA orthologs (Matsunaga et al., 2004), and two 

WUSCHEL orthologs (Kazama et al., 2012).  However, it is not clear if any of these genes 

function in a sexually deterministic fashion. 
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In monoecious species unisexuality is not expected to culminate in the development of 

sex chromosomes and need not follow the series of mutations predicted by Charlesworth 

and Charlesworth (1978).  Although sex determining genes must exist in these species, they 

cannot be regulated through segregation of alleles as the floral meristems within a plant will 

all have the same genotype regardless of the gender of the flower produced.  Alternative 

regulation of these sex determining genes would allow for the development of alternate 

sexual organs within a single individual plant.  In monoecious species in which sex-

determination has been studied genetically, genes that control the alternative development 

of flower gender tend to trigger regulatory pathways leading to feminizing or masculinizing 

development (Golenberg & West, 2013).  In most cases, these are not unique sex-specific 

genes, but rather genes associated with common plant hormone systems.  Work in the 

common melon, Cucumis melo, has identified two loci that contribute to sexual 

determination.  Melons can produce monoecious (AAGG), andromonoecious (aaGG), 

gynoecious (AAgg), and hermaphroditic (aagg) individuals (Poole & Grimball, 1939; 

Kenigsbuch & Cohen, 1990).  The A locus was identified as CmACS-7 a member of the ethylene 

biosynthesis pathway (Boualem et al., 2008), the G locus was identified as CmWIP1 (Martin 

et al., 2009) a C2H2 zinc-finger transcription factor whose function in Arabidopsis has been 

shown to be involved in development of female structures in the carpel (Sagasser et al., 2002; 

Crawford et al., 2007).  Recently an upstream gene CmACS11 has been identified that 

epistaticly controls the alternative expression of CmWIP1 and CmACS7 (Boualem et al., 

2015)..  Identification of the A locus as a member of a hormone biosynthesis pathway fits 

well with previous observations of melon sexual determination being influenced by the 

application of ethylene (Byers et al., 1972).  The influence of hormones on sex determination 
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is not limited to C. melo and has been observed in other Curcubits (McMurray & Miller, 1968) 

Mercurialis annua (Durand & Durand, 1991) and in maize (Bensen et al., 1995).  However, 

the hormone correlated to sex determination differs between species: ethylene in Curcubits 

(Trebitsh et al., 1997; Mibus & Tatlioglu, 2004); auxin and kinetin/cytokinin in M. annua 

(Dauphin-Guerin et al., 1980; Hamdi et al., 1987); and gibberellic acid/jasmonic acid in maize 

(Hansen et al., 1976a; Acosta et al., 2009).  These data have improved our understanding of 

the genes and hormones able to influence sexual determination, but little progress has been 

made in understanding how these determining factors regulate downstream pathways to 

cause differential sexual development. 

Spinach (Spinacia oleracea) is a dioecious plant that has been domesticated and valued 

for its highly nutritious leaves.  The agricultural importance, hardy and reliable growth, 

simplified flower structures, diploid genome with low chromosome number (2n=12), and 

rapid maturity make spinach an excellent organism to study the genetic mechanisms 

controlling sexual development in dioecious species.  Spinach plants develop unisexual 

flowers without any intermediate hermaphroditic stage indicating that sexual determination 

occurs early in floral primordia development or during the transition to flowering  (Pfent, C. 

et al., 2005).  Female spinach flowers develop two sepals that surround the ovary and 

partially fuse along their edge.  Multiple stigma lobes protrude from between the sepals.  

Male flowers produce four sepals that do not fuse, four stamens and no central organ.  

Neither male nor female flowers develop petals (Sherry et al., 1993; Sather et al., 2005).  

Early studies have indicated the presence of a sex-determining locus on the longest 

chromosome in spinach (Janick & Stevenson, 1955; Janick et al., 1959; Mahoney et al., 1959), 

however, there is no consistent evidence of heteromorphic sex chromosomes (Ramanna, 
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1976).  There are reports of heteromorphic chromosomes in some isolated accessions of the 

congener Spinacia tetrandra, but these are not found in all accessions of that species or in 

Spinacia oleracea or Spinacia turkestanica (Fujito et al., 2015) .  Similarly, sex-specific 

markers have been reported (Khattak, J et al., 2006; Lan et al., 2006; Onodera et al., 2011) to 

be linked to a single sex determining gene on chromosome 1, however these markers are 

identified in restricted accessions and do not always remain linked with sex in different 

accessions (Fujito et al., 2015).  The most recent draft of the spinach genome (Xu et al., 2017) 

has not identified sex-specific chromosomal regions.  Therefore, while a 

heterozygous/homozygous sex determination system is accepted, the question of whether 

such a gene or gene cluster is embedded in non-recombining chromosomal region remains 

unresolved.  

Previously we have observed that the spinach B class genes SpPISTILLATA (SpPI) and 

SpAPETALLA3 (SpAP3) begin to be expressed in early male flower primordia prior to the 

initiation of organ primordia, but are not expressed at any time in female flowers (Pfent, C. 

et al., 2005).  Work using a virus induced gene silencing (VIGS) vector pWSRi (Sather & 

Golenberg, 2009) indicated that silencing of B class gene expression in male spinach plants 

resulted in mosaic individuals with homeotic transformations of stamens into carpels and 

the formation of gynoecia in the normally absent fourth whorl (Sather et al., 2010).  This 

indicates that the B class genes are not only responsible for the canonical B class role of 

stamen determination but also possess a novel function required for the suppression of 

female fourth whorl organs.  Therefore, B-class genes are acting as the masculinizing genes 

in spinach.  The suppression of B-class expression during early flower development leads to 

female commitment.  Thus, the spinach feminizing factor prevents B class expression and is 
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therefore epistatic to the male determining genes.  The identity of such feminizing factors 

remains unclear. 

Previous work has shown that the phytohormone gibberellic acid (GA) can influence 

spinach sexual development.  The application of GA to media of hydroponically grown 

spinach was enough to masculinize 78% of the treatment group (Chailakhyan, MK & 

Khryanin, VN, 1978).  We can infer that increased GA concentration is able to initiate 

expression of B class genes.  Similar to other phytohormones, GA perception initiates the 

degradation of repressive transcription factors that then allows the activation of hormone 

response genes (Spartz, A. K. & Gray, W. M., 2008).  The DELLA family of transcription factors 

has been observed to function as negative regulators of GA signaling (Peng et al., 1997; 

Silverstone et al., 1998).  GA is perceived by a receptor GIBBERELLIN INSENSITIVE DWARF1 

(GID1) which is observed to interact with DELLA family proteins in a GA dependent manner 

(Ueguchi-Tanaka et al., 2005).  This interaction causes a conformational change in the GID1 

protein allowing it to bind the F-box component of a SCF E3 ubiquitin ligase (Murase et al., 

2008), which leads to GAI degradation mediated by the 26S proteasome (Fu et al., 2002).  

The floral F box protein UFO is required for polyubitination and is required for activation of 

B class genes (Ng & Yanofsky, 2001; Laufs et al., 2003; Ni et al., 2004; Hepworth et al., 

2006)(Ng & Yanofsky, 2001; Laufs et al., 2003; Ni et al., 2004; Hepworth et al., 2006).  There 

appears to be a single spinach homolog of UFO, and it is expressed in both male and female 

flowers (J. A. Naeger and E. M. Golenberg, unpublished data). 

In this study, we investigate the role of GA and the DELLA transcriptional regulators in 

sex determination of dioecious spinach.  The exogenous application of GA and paclobutrazol 

(PAC), a chemical inhibitor of GA biosynthesis confirmed previous results showing that GA 
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masculinizes spinach but also revealed the lack of GA feminized spinach.  An ELISA assay was 

used to assess GA concentration in various tissues, however, no difference in GA content 

between males and females were observed.  Using a VIGS based delivery system we silenced 

the spinach homolog GIBBERELLIC ACID INSENSITIVE (GAI) a DELLA family member known 

to be responsive to GA and show that SpGAI expression is required for female determination.  

Silencing of spinach B class gene expression in males had no effect on SpGAI expression, 

indicating that SpGAI acts upstream of the B class genes.  However, SpGAI is differentially 

expressed in a gender-specific fashion.  Based on these data and incorporating observations 

from previous work we present a molecular model for sexual determination of dioecious 

spinach dependent on SpGAI expression. 

METHODS 

Plant Material 

All plants used in this study are Spinacia oleracea cv.America (Ferry-Morse Seed 

Company).  Plants were grown from seed in commercial potting soil and watered every two 

to three days as needed. 

GA, PAC, and MG132 Application 

Spinach plants were grown under flowering conditions (16hrs light, 8hrs dark) at 20ºC 

until reaching the two-to-four leaf stage at which time approximately 1-2mL of either 50μM 

GA3 or 50μM paclobutrazol solution were sprayed onto spinach plant leaves and stems.  The 

control group was sprayed with water only.  The solutions were applied in separate fume 

hoods to eliminate the possibility of accidental cross-treatment.  Once applied the treated 

flats remained in the fume hood until the solution present on the plant had dried before being 

returned to separate growth chambers.  Flats of spinach were treated in this manner every 
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three to four days for two weeks.  MG132 was applied directly to early emerging 

inflorescence meristems.  The treatment group received 50μL of a 50μM MG132 and 0.02% 

Tween-20 solution.  The control group received 50μL application of 0.02% Tween-20.  

Resulting morphology was photographed using on an Olympus SZX 16 Dissecting 

Microscope.   

GA quantification 

Approximately 10mg of tissue from juvenile leaves, mature leaves, inflorescence 

meristem, and mature flowers were harvested from eight male and female individuals.  

500uL 1xPBS added to dissected tissue and ground with mortar and pestle, then more 

thoroughly homogenized by sonication.  Homogenate was centrifuged to pellet cellular 

debris and the supernatant transferred to a clean tube for use in ELISA assay.  GA content of 

tissue samples was analyzed following the protocol accompanying Plant Gibberellic Acid, GA, 

ELIAS kit from MyBioScource (Catalog# MBS9310617).  Two-way ANOVA calculations were 

used to determine statistical significance. 

SpGAI isolation 

DELLA protein sequences were downloaded from GenBank for A. thaliana RGA1 

(CAA72177), RGA2 (CAA72178), GAI (NP_172945), Glycine max GAi1 (ABO61516), Vitis 

vinifera predicted GAI1 (XP_002284648), and Malus X domestica GAI1 (ACL68360) and 

aligned to detect conserved amino acid sequences downstream of the DELLA conserved 

regions.  Degenerate primers were designed (Supplemental Table 1) and the resultant PCR 

product was cloned and sequenced.  The remainder of the sequence was determined by 

3’RACE and 5’ Splinkerette PCR (Devon et al., 1995).  Additional sequences were downloaded 

for comparisons from Cucurbita maxima (Q6EI05), Populus trichocarpel (XP_002305198), 
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Gossypium barbadense (ABG26370), Sinningia speciosa (ACM47244), Theobroma cacao 

(XP_007045197), Beta vulgaris (XP_010681882), and Ricinus communis (EEF34604).  We 

aligned the predicted translated amino acid using the Geneious alignment tool with a 

BLOSUM62 cost matrix (Gap penalty 12, Gap extension penalty 3) and estimated a 

phylogenetic tree using a Neighbor-joining Geneious application (Kearse et al., 2012). 

VIGS based knockdown of GAI and PI expression 

The gene silencing vector pWSRi derived from the Beet Curley Top Virus was used for 

gene silencing (Golenberg et al., 2009).  In general, a 200 bp fragment is cloned into the 

vector where the sequence will be transcribed in planta in both directions.  Sequences for 

the pWSRi:SpAP3 and pWSRi:SpPI have been previously published (Pfent, C. et al., 2005).  To 

construct the pWSRi:SpGAI vector, we subcloned a 400bp fragment of SpGAI from the 

variable region 3’ of the DELLA sequence (but including the VHYNP encoding sequence) into 

our silencing vector pWSRi.  Individual Spinacia oleracea plants were biolistically 

bombarded with pWSRi: Empty Vector (negative control), pWSRi: SpGAI, or pWSRi: SpPI 

coated tungsten bullets once they matured to the two-to-four leaf stage.  The BioRad Helios 

Gene Gun was used for biolistic bombardment and plants where shot once per plant at 

~80psi.  Bullets were created following the manufactures instructions while combining 

25mg tungsten with ~50μg pWSRi: GOI or pWSRi: Empty Vector plasmid DNA in ~25in. of 

tubing which results in delivering ~1μg of pWSRi: GOI or pWSRi: Empty Vector per target.  

After bombardment, the plants were placed under a plastic wrap tent for 24hrs to keep local 

humidity elevated.  The treated spinach was grown under flowering conditions (16hrs light, 

8hrs dark) at 20ºC in Conviron growth chambers.  Treated plants were classified as female 

or male based on the predominant flower type and inflorescence architecture.  Specifically, 
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female flowers are noted by the presence of two sepals and a central carpel, whereas male 

flowers are distinguished by the presence of four sepals and stamen.  Female inflorescences 

in cv America have prominent leaves on the axis and flowers in the leaf axils.  Male 

inflorescences have much reduced leaves on the inflorescence.  Resulting phenotypes were 

photographed on an Olympus SZX 16 Dissecting Microscope approximately 4 weeks post 

bombardment.  

qPCR analysis of VIGS based silencing  

Floral inflorescence RNA samples from multiple male and female spinach individuals in 

the control group, and multiple mixed flower individuals from the treatment group were 

extracted and purified using the RNeasy plant RNA extraction kit from Qiagen.  cDNA was 

created following the ClonTech RNA to cDNA EcoDry Premix kit protocol using 3μg of sample 

RNA as template.  qPCR was performed on Agilent Technologies Mx3000P machine using 

iTaq Universal SYBR Green Supermix buffer from BioRad.  Primer information can be found 

in Supplemental Table 1.  Amplification conditions were as follows: Denaturation at 96ºC for 

3min, then 40 cycles composed of 30sec denaturing at 96ºC, annealing at 55ºC for 30sec, and 

extension at 72ºC for 30sec.  Melting point profiles were examined to confirm that single PCR 

products were produced.  Expression values were determined with the ΔΔCt method using 

UBQ5 as the internal reference gene (Gutierrez et al., 2008) when calculating GAI expression 

the female sample was set as the calibrator sample.  When calculating PI expression the male 

sample was set as the calibrator sample.  One-way ANOVA calculations and Tukey test were 

performed on the data to determine statistical significance.  

RESULTS 

GA Influences Sex Development in Spinach 
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Previous studies that applied exogenous GA either through hydroponic or direct 

application demonstrated the GA has a masculinizing effect in spinach (Chailakhyan & 

Khryanin, 1978; Chailakhyan & Khryanin, 1979).  We expanded upon these studies to include 

paclobutrazol (PAC), a chemical inhibitor of GA synthesis and utilized a topical spray of PAC 

and GA for application.  After 3 weeks, the GA treated individuals were taller and had larger 

leaves compared to control plants.  As predicted the PAC treated individuals exhibited a 

phenotype opposite to exogenous GA application growing shorter than untreated plants with 

smaller, dark green leaves.  Additionally, the PAC treatment group flowered three weeks 

later than untreated and GA treated groups, which flowered at approximately the same time. 

The GA treated females produced inflorescences that contained a range of floral 

morphologies including wild-type female (Figure 1A), female with ectopic stamen (Figure 

1B), and wild-type male flowers.  The degree to which stamen develop and carpels are 

suppressed (masculinization) can vary from mild to severe.  Mild masculinization exhibits a 

single stamen that develops within two sepals alongside one pistil (Figure 1B).  Moderate 

masculinization displays a flower with two sepals where the pistil has been replaced with 

one or more stamens (Supplemental Figure 1A).  Severely modified females have four sepals, 

four stamens, and a single pistil (Supplemental Figure 1B).  We did not observe any unusual 

floral phenotypes in male plants treated with GA.  These data are consistent with previous 

observations and support the notion that GA promotes male development in spinach. 
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Figure 2.1 – Exogenous application of GA3 and PAC onto Spinacia oleracea. (A) and (C) are wild-type 

female and male flowers respectively. (B) Masculinized female flower resulting from GA3 application 

with two sepals, one stamen, and one pistil. (D) Feminized male flowers resulting from PAC application 

with a single stigma and central ovary. White arrow = sepals, blue arrow = stamen, red arrow = stigma, 

yellow arrow = ovary. 

In contrast to GA treatment, PAC treatment reduced stamen development and induced 

pistil development in male spinach plants.  PAC application produced a range of phenotypes.  

Compared to wild-type male flowers (Figure 1C) moderately affected males would often 

display homeotic conversion of one or more stamens into female organs including stigma or 

complete pistils, sometimes accompanied by development of a gynoecium in the fourth 

whorl (Figure 1D, Supplemental Figure 2A).  Severely affected male flowers retained four 

sepals but developed a wild-type pistil and no stamen (Supplemental Figure 2B).  Notably, 
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some male flowers yielded an incomplete homeotic conversion where stigma would develop 

from stamen tissue (Supplemental Figure 2C).  The female plants were not observed to have 

any floral modifications following PAC treatment.  Taken together these results indicate that 

an excess of GA causes the production of male organs in females while reducing GA content 

promoted female organ development in males. 

Proteasome Function Required for Male Development 

DELLA family transcription factors are known to repress GA response genes and GA is 

observed to facilitate the degradation of DELLA repressors thus allowing the expression of 

GA response genes (Peng et al., 1997; Silverstone et al., 1998).  This GA initiated DELLA 

degradation is achieved through processing by the 26S proteasome (Fu et al., 2002; Dill et 

al., 2004).  To determine if the observed influence of GA on sexual development requires the 

26S proteasome, and thus potentially DELLA transcriptional repressors, we exogenously 

applied MG132, a chemical inhibitor of the 26S proteasome (Rock et al., 1994).  Upon 

flowering, we observed development of female organs in male individuals (feminization) 

while no unusual phenotypes were observed in female plants.  Compared to wild-type males 

(Figure 2A) affected male flowers were observed developing stigma (Figure 2B) and 

gynoecium (Figure 2D) within otherwise male flowers.  This phenotype resembles the 

feminization phenotype observed with PAC treatment (Figure 2C and 2D).  Thus, reduction 

of GA or inhibition of proteasome mediated protein degradation produces the same 

developmental response.  This similarity suggests that both GA hormone and 26S 

proteasome function are required for male development indicating that androecium 

initiation results from the degradation of an inhibitor in response to GA hormone signaling. 
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Figure 2.2 – Exogenous application of MG132 onto Spinacia oleracea. (A) Wild type male flower.  (B) 

Feminized male flower resulting from MG132 application with central stigma and (D) another example 

with an ovary developing in the fourth whorl. (C) Feminized males observed after PAC treatment. White 

arrow = sepals, blue arrow = stamen, red arrow = stigma, yellow arrow = ovary. 

GA content in male and female tissues 

 In order to investigate if there is a difference in GA content between males and females, 

we prepared tissue homogenate derived from mature inflorescences, the inflorescence 

meristem region, juvenile leaves, and mature leaves of eight male and eight female plants.  

All samples of juvenile leaves were harvested at the second leaf stage, inflorescence 
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meristem samples were harvested between the sixth and ninth leaf stage.  Mature leaves 

were taken after bolting had begun and flower inflorescences were sampled before 

dehiscence or fertilization occurred.  The GA content of these samples was analyzed via 

ELISA and a two-way ANOVA (Figure 3).  There was no significant interaction between tissue 

type and gender (F 3,47= 0.3049 NS), nor significant effect by gender (F 1,47= 0.0457 NS).  GA 

content did vary significantly by tissue type (F 3,47= 49.37, p < 0.001). The inflorescence apical 

region was observed to have the highest concentration of GA while juvenile leaves had the 

least amount of GA.  Mature leaves and mature flowers had a similar amount of GA content.  

This is consistent with reports from other species (Silverstone et al., 1997). These data 

indicate that GA content does not portend sexual development but perturbation of GA 

concentration will influence sex in a predictable fashion. 

Figure 2.3 – GA content analysis of Spinacia oleracea tissue homogenate. Eight male and female 

individuals analyzed for GA hormone content. Error bars represent SD (n = 6 independent samples), 

asterisks indicate p<0.01 from Two-way ANOVA analysis and Tukey test, letters indicate statistically 

significant groups. J. Leaf = Juvenile Leaf, M. Leaf = Mature Leaf, I.M. = Inflorescence Meristem  
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SpGAI Expression is Required for Female Development 

 Based on these observations, the sex determination in spinach cannot be explained 

through differential production of GA, but must be responsive to GA signaling.  Our present 

results suggest that the female determining protein is degraded by the 26S proteasome.  GA 

response genes are known to be regulated by DELLA transcriptional repressors that are also 

understood to be degraded by the 26S proteasome (Sasaki et al., 2003; Dill et al., 2004).  

Taken together these observations suggest that a spinach DELLA protein is required for 

female development and must be degraded to allow for male development.  Arabidopsis 

thaliana is known to possess five DELLA transcription factors while other species, such as 

rice, have only one copy (Ikeda et al., 2001; Lee et al., 2002).  

To isolate DELLA protein genes from S. oleracea cv America, degenerate primers were 

designed to anneal to conserved regions in Arabidopsis GAI, RGA1, RGA2, and proposed 

DELLA proteins in other eudicots.  A 472 bp sequence was amplified and sequenced.  The 

sequence contained conserved amino acid encoding regions and aligned significantly to GAI-

like or GRAS DELLA proteins in other species.  The entire coding, 3’ UTR, and 5’ upstream 

regions were isolated from cDNA and genomic DNA.  The complete sequence was amplified 

as a single PCR product using primers 5’ to the start codon and 3’ to the stop codon.  There 

are no introns and no detectable variations among male and female spinach individuals in 

the regions sequenced.  The predicted amino acid sequence was then used in phylogenetic 

analysis and is sister to a Beta vulagaris GAI protein (Supplemental Figure 3).  As they 

became available, we compared our sequence to male and female flower transcriptomes (N. 

W. West and E. M. Golenberg, unpublished) and to the draft S.oleracea cv Viroflay genome 

1.01 (Dohm et al., 2014).  The PCR isolated sequence was 100% identical to the 
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transcriptome contig and 99.9% identical to the cv Viroflay genomic sequence.  In searching 

the Spinacia data bases, we used a 150bp segment of our sequenced SpGAI that included the 

DELLA motif and flanking regions as a query, we were unable to detect an additional DELLA 

protein.  The sequence has been submitted to GenBank (Accession No. KX026951).  

To date, we have only detected one copy of a DELLA family transcription repressor 

present in the spinach genome.  We therefore hypothesize that SpGAI is the DELLA protein 

required for female development and the main target for GA initiated 26S proteasome 

degradation in male flower development.  In order to test this, we cloned SpGAI into our VIGS 

vector and biolistically bombarded spinach at the two-to-four leaf stage.  A separate group 

of plants were bombarded with pWSRi:EmptyVector to serve as a control group. 

The pWSRi:GAI and EmptyVector control groups developed at normal rates, suffering 

minimal damage from the bombardment.  Spinach in the pWSRi:EmptyVector control group 

developed phenotypically normal female or male flowers (Figure 4A and 4C).  Females in the 

pWSRi:GAI group developed a variety of floral phenotypes displaying a range of male organ 

development.  Moderate phenotypes developed stamen in place of pistils but still produced 

two sepals (Figure 4B).  While more severe phenotypes developed four sepals, a single pistil, 

and a single stamen (Supplemental Figure 4A) as well as flowers with four sepals, four 

stamen, and a single central pistil, similar to other perfect flowers in the Chenopodiaceae 

(Supplemental Figure 4B).  Males within pWSRi:GAI group developed wild-type male flowers 

and appeared unaffected by SpGAI silencing.  
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The observation of male organ development on individuals with reduced SpGAI 

expression suggests that SpGAI is able to suppress B-class gene expression.  In order to 

determine if B-class genes are able to influence SpGAI expression we replicated the 

pWSRi:SpPI gene silencing experiment previously reported (Sather et al., 2010) and sampled 

affected flowers from all treatment groups to analyze gene expression.  Compared to wild-

type male flowers (Figure 4C), SpPI silencing produced inflorescences with a variety of floral 

phenotypes including wild-type male, wild-type female, and mixed-gender flowers.  

Occasionally, this phenotypic range was displayed within a single inflorescence (Figure 4D) 

in which we observe a wild-type male unaffected by knockdown treatment; a 

hermaphroditic flower with four sepals, four stamen, and single pistil indicating mild SpPI 

knockdown; a moderately affected flower with four sepals, single stamen, and well 

developed pistil; and severely affected flower that appears as a wild-type female flower. 
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Figure 2.4 – Phenotype resulting from VIGS based knockdown of SpGAI and SpPI in Spinacia oleracea. 

(A) Wild-type female flower on control treated individual. (B) Masculinized female resulting from SpGAI 

knockdown with two sepals, one stamen, and no female organs. (C) Wild-type male flowers on control 

treated individual. (D) Feminized male resulting from SpPI knockdown with four sepals, single stigma 

and stamen. White arrow = sepals, blue arrow = stamen, red arrow = stigma.  

To asses SpGAI expression inflorescence tissue was harvested and RNA was extracted 

from five individuals of each treatment group.  SpGAI expression was observed via RT-qPCR 

and the ΔΔCt method was used to calculate relative expression using female samples as the 

calibrator.  We observe a significant difference in SpGAI expression in males compared to 

female individuals, with males producing roughly half the SpGAI mRNA as females (Figure 

5A).  Females that produced stamens from the SpGAI knockdown treatment expressed SpGAI 

at a greatly reduced level when compared to wild-type females although their expression 

range fell within observed male expression values and were not found to be statistically 

different from males.  Males that developed female organs with pWSRi:PI treatment are 

observed to have SpGAI expression similar to wild-type males.  Compared to female levels of 

SpGAI expression, wild-type male, pWSRi:GAI treated females, and pWSRI:PI treated males 

have statistically significant reduction of SpGAI expression (F=33.58, p<0.001, df=3).  

However, there is no statistically significant difference in SpGAI expression among wild-type 

males, pWSRi:GAI treated females, and pWSRI:PI treated males. 

Analysis of SpPI expression was conducted by harvesting inflorescence tissue and 

extracting RNA from three individuals from each treatment group.  Characterization of SpPI 

expression was made using qRT-PCR and interpreted using the ΔΔCt method with male 

expression set to one.  SpPI expression in wild-type females is non-measurable and follows 
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previously reported observations (Pfent, C. et al., 2005).  Females developing stamens 

following pWSRi:GAI treatment showed dramatically increased expression of SpPI compared 

to wild-type females, although not quite matching the wild-type male levels of expression 

(Figure 5B).  Males producing female tissue following pWSRi:PI treatment were observed to 

have significantly reduced SpPI expression compared to wild-type males.  ANOVA analysis 

indicates that the observed differences in expression are statistically significant and Tukey 

testing identified that each sample was significantly different from all others tested (F=2058, 

p<0.001, df=3).  Taken together these results suggest that differential expression of SpGAI is 

necessary and sufficient to initiate SpPI expression, which is itself able to simultaneously 

promote androecium development while suppressing gynoecium development.  SpPI 

expression does not appear to influence the expression of SpGAI in a significant way, 

indicating SpPI function is downstream of SpGAI. 

Figure 2.5 – qPCR expression analysis of SpGAI and SpPI in wild-type and treatment groups of Spinacia 

oleracea. (A) Expression of SpGAI in wild-type males, SpGAI knockdown individuals, and SpPI 

knockdown individuals. Expression was calculated using the ΔΔCt method setting the female data to 1 

as the calibrator sample. Error bars indicate SD (n = 5 independent samples), asterisks represent 

p<0.001 (***) from one-way ANOVA analysis, letter indicate groups found to be significantly different 

from Tukey test. (B) Expression of SpPI in wild-type females, SpGAI knockdown individuals, and SpPI 
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knockdown individuals. Expression was calculated using the ΔΔCt method setting the male data to 1 as 

the calibrator sample. Error bars indicate SD (n = 3 independent samples), asterisks represent p<0.01 

(**) and p<0.001 (***) from one-way ANOVA analysis, letter indicate groups found to be significantly 

different through Tukey test. 

Sequence Analysis of the 5` Regulatory Region of SpGAI 

Sex specific sequence variation of this 5` regulatory region could account for the 

differential expression of SpGAI observed in male and female individuals.  Regulatory regions 

that influence transcription in plants are often confined to approximately 1kb upstream of 

the gene in question (Yu et al., 2016).  To determine if the differential expression of SpGAI 

between males and females is due to discrepancies in their cis-regulatory regions we cloned 

1280bp fragment from genomic DNA samples of male and female spinach.  This 1280bp 

region included the first 125bp of the SpGAI exon and the preceding 1155bp of the 5` 

regulatory region.  Sanger sequencing was performed on the clones and compared to the 

published genome of S. oleracea cv Viroflay 1.01 (Dohm et al., 2014).  Analysis revealed 1130 

high quality base reads with no sequence differences between male and female samples 

(Supplemental Figure 5).  However, comparison to the published cv Viroflay genome 

revealed that a 61bp insert is present in the 5` regulatory region in both male and female S. 

oleracea GAI located -621bp from the start codon of SpGAI (Figure 6A).  Dot plot comparison 

between S. oleracea cv America 5` regulatory region of SpGAI and the cv Viroflay genome 

indicates a region of repetitive sequence elements clustered between -495bp and -737bp 

from the start codon (Figure 6B, Supplemental Figure 6).  Thus, while the region varies 
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among culitvars of spinach, there is no detectable variation on the nucleotide level that 

correlates with SpGAI expression and gender determination. 

Figure 2.6 – Sequence comparison between male and female SpGAI, and between Spinacia oleracea cv 

America and cv Viroflay.  (A) Sequence alignment of published S. oleracea cv Viroflay, male and female 

S. oleracea cv America showing a 120bp region with the unique 61bp cv America insertion.  (B) Dot plot 

of SpGAI from S. oleracea cv America and Viroflay indicating numerous repetitive sequences. Blue box 

highlights the cv America specific 61bp insertion.  Blue lines indicate short matches, red indicates a 

match length over 100bp.  Alignment and dot plot created with Geneious software package ver 10.2.2 

DISCUSSION 

We have previously shown that the spinach B-class genes are able to suppress the 

development of female floral organs and thus is the masculinizing pathway (Sather et al., 

2010).  Coupled with the current results, we propose a mechanism for sexual determination 

in spinach that incorporates SpGAI expression and GA content (Figure 7).  The expression of 

SpGAI is required for the development of female organs.  SpGAI acts to repress B-class 
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expression that is necessary for stamen development rather than selectively initiating 

female development.  Consistent with the regulatory hierarchy, we do not observe any 

significant change in SpGAI expression upon B-class silencing suggesting that there is no 

significant feedback mechanism present and that B-class expression is downstream of SpGAI 

function.  The observation that SpGAI is expressed at a higher level in females than in males 

suggests this transcription repressor may function as a switchpoint determining which 

sexual development path is initiated.  Indeed, upon VIGS mediated knockdown of SpGAI, 

affected females were observed with reduced SpGAI expression and also an increased SpPI 

expression.  Without any apparent differences in the cis-regulatory region of SpGAI, the cause 

of sex specific differential expression remains elusive but it is likely to involve post-

transcriptional regulation and/or epigenetic modifications.  It is understood that DELLA 

transcription factors like SpGAI are targeted for degradation upon GA signaling.  Thus, given 

the same GA signal but differential expression of SpGAI the response would differ between 

males and females.  Following the Arabidopsis model, expression of a spinach LEAFY 

homologue (SpFY) is expected to initiate transition to flowering (Weigel & Nilsson, 1995; 

Blazquez et al., 1997).  In spinach females, due to an excess of SpGAI, which prevents the 

activation of B-class genes, only the C-class gene SpAGAMOUS is initiated resulting in 

gynoecium development (Sather, D. N. et al., 2005).  The low level of SpGAI in males is 

degraded during transition to flowering allowing SpLFY to activate both B-class and C-class 

genes.  C-class expression results in floral determinacy and would typically result in female 

organ development, however, SpAP3 and SpPI have a novel function that suppresses 

gynoecium development but does not interfere with C-class determinacy functions resulting 

in male flowers (Sather, D. N. et al., 2005).  Hence the feminizing GA/SpGAI pathway 
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epistatically suppresses the masculinization pathway resulting in female flowers, while 

release of the B-class suppression results in gynoecially suppressed male flowers. 

Figure 2.7 – Proposed mechanism for sexual determination in Spinacia oleracea.  Arrow heads indicate 

activation of target genes, “T” heads indicated repression of gene expression or function. Dashed lines 

indicate indirect interaction.  Gibberellic acid (GA) is perceived by its receptor GA INSENSITIVE DWARF1 

(GID1), which triggers the degradation of the repressor protein GAI with the aid of the F box protein 

UNUSUAL FLORAL ORGANS (UFO) and its associated SCF complex.  Under permissive conditions of 

reduced GAI, B class genes are activated.  They suppress the formation of the fourth whorl.  Under non-

permissive, high GAI content, B class genes are suppressed, and only the pistil develops under the effects 

of the floral C class identity gene AGAMOUS.  AGAMOUS also acts to terminate the meristem 

maintenance gene WUSCHEL (Lohmann et al., 2001). 

The evolution of unisexual flowers from an ancestral hermaphroditic state has evolved 

independently numerous times.  Due to this independence, there is no expectation for the 

development of a shared method for sexual segregation.  Indeed, there is much diversity in 

the method of segregation.  Yet the emerging spinach model fits well with the multiple 

examples of hormone mediated sex-determination.  In melon three genes have been 

identified to control sexual determination CmACS11, CmWIP1 and CmACS7 (Boualem et al., 

2008; Martin et al., 2009; Boualem et al., 2015).  CmACS11 is an upstream gene that 
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epistatically represses CmWIP1 expression.  CMWIP1 simultaneously suppresses gynoecium 

formation and the expression of CmACS7, while CmACS7 expressionCmACS7expression 

results in the suppression of stamen formation.  Thus, ultimately, expression of CmACS11 

determines the development of either male or female flowers (Boualem et al., 2008; Boualem 

et al., 2015)..  CmACS7 is known to function in the ethylene biosynthesis pathway and is 

required to suppress stamen development in female melon (Boualem et al., 2008).  This 

corresponds well with earlier observations of feminization upon exogenous ethylene 

application (Byers et al., 1972).  In a similar manner, dwarf mutations in maize have been 

identified as a part of the GA biosynthetic pathway (Hedden & Phinney, 1979; Hedden & 

Graebe, 1985).  Phenotypically the dwarf mutations produce short andromonoecious 

individuals.  The presence of hermaphroditic flowers suggests that these genes are required 

for arresting male organ development in female floral primordia.  In maize the tassel seed 

(ts) mutations were observed to feminize the male flowers through the failure to abort pistils 

(Emerson, 1920).  The tassel seed mutations have been identified as parts of the jasmonic 

acid biosynthetic pathway (Calderon-Urrea & Dellaporta, 1999; Acosta et al., 2009).  

Exogenous application of the proper hormone reverses the sexual defects observed in tassel 

seed and dwarf mutants suggesting that hormones play a vital role in sexual determination 

(Phinney, 1956; Acosta et al., 2009).  Crosstalk between the response elements of GA and JA 

hormone signaling have been observed to function in an antagonistic manner switching 

alternatively between plant growth and defense responses (Yang et al., 2012).  However, this 

crosstalk mechanism has not been applied to sexual development in mazie.  Numerous other 

species are observed to be responsive to hormonal influence during sexual development 

(Korpelainen, 1998; Golenberg & West, 2013).  
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Although common, hormonal influence of sex determination is not always necessary.  

The persimmon Diospyros lotus is a tropical dioecious plant species with XY males but 

homomorphic sex chromosomes.  Expression of MeGI, a homeodomain transcription factor 

is observed to be female specific and functions to suppress male organ development (Akagi 

et al., 2014).  MeGI expression is prevented in male flowers by the tissue specific expression 

of OGI.  The OGI gene is observed to transcribe small RNAs with complementarity to MeGI 

suggesting a form of epistatic control based on siRNA (Akagi et al., 2014).  The identification 

of elements involved in gynoecium abortion is still undetermined. 

The Spinacia, Cucumis, and Diospyros sex determination models are novel in that the 

mechanisms for sex determination are all based on the epistatic regulation of organ fate.  In 

these cases, single gene activities act upon secondary target genes to trigger alternative 

sexual development.  This implies that regulation of single genes, either by allelic segregation 

or by differential expression under environmental (hormone) cues can drive sexual 

determination.  This contrasts with classic models (Charlesworth & Charlesworth, 1978) in 

which alternative expression of multiple genes is regulated by chromosomal segregation 

over generations, and must be coordinated through chromosomal linkages.  Because of the 

necessity for alternative segregation of chromosomes with sex determining genes, 

heterogametic sex determination systems, and by extension, heteromorphic sex 

chromosomes must evolve.  The Spinacia, Cucumis, and Diospyros models, because they are 

dependent on a single sex determining gene that acts as a switchpoint, need not suppress 

recombination and hence, need not evolve classic sex chromosomes (Golenberg & Freeman, 

2006; Sather et al., 2010; Golenberg & West, 2013; Ma & Pannell, 2016; Renner, 2016).  The 

scarcity of degenerated sex chromosomes and sex determination genes in non-recombining 
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regions of such chromosomes, may hint that the single gene switchpoint model of sex 

determination found in Spinacia, Cucumis, and Diospyros could be a common mechanism for 

sex determination in plants, therefore precluding the evolution of heteromorphic sex 

chromosomes.  Hormonal switches in monoecious species, such as Cucumis or Zea, similarly 

reinforce the concept that alternative gene expression can be driven by single cues and not 

be dependent on presence or absence of alternative sex-determining genes.  Similarly, Diggle 

et al (Diggle, P. K. et al., 2011) demonstrated that the developmental stage of alternative 

organ abortion or initiation in unisexual flowers within a species tends to be identical across 

gender, reinforcing the potential underlying process of a single switchpoint in development.  

A model in which male and female suppressing genes evolve and act independently would 

not predict such temporal coordination. 

Without discrete, alternative sex organ-sterilizing loci that would necessitate non-

recombination to prevent the constant regeneration of hermaphroditic or sterile offspring, 

there would be no selective drive for the development of heteromorphic sex chromosomes.  

However, this does not exclude the possibility that one chromosome of a homologous pair 

could function as a sex determining chromosome.  Indeed, some sex determination models 

that are described as XY or ZW with homomorphic chromosomes (Renner, 2014; Kersten et 

al., 2017), may reflect the necessity of homozygosity or heterozygosity at switchpoint genes 

rather than genically evolving whole chromosomes.  With sex determination uncoupled from 

degenerating chromosomal regions, we may also predict that genes involved in sex organ 

development and secondary sexual characteristics could be found throughout the genome 

and would not necessarily be anchored to any sexually segregating chromosome or region 

thereof.  Taking the link between sexual determination and hormonal signaling into account 
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one might expect to find genes involved in sexual development to be responsive to the same 

endogenous signals and thus be expressed in coordination.  Hierarchical clustering of 

expressed genes from RNA seq experiments will allow identification of suites of genes that 

are expressed in a sex specific and coordinated way (Langfelder et al., 2008). 

It must be emphasized that a model of sex determination based on a single epistatic, 

switchpoint segregating locus, whether it is related to hormonal response or to epigenetic 

regulation, does not supplant the chromosomal theory of sex determination regulation.  

Rather these should be viewed as a continuum of differing genetic sex determination systems 

(Golenberg & West, 2013).  The existence of switchpoint sex determination systems may be 

a partial explanation for the paucity of examples of heteromorphic chromosomal systems in 

the literature, although recent evolution may also explain the difficulty in identifying neo-

sex chromosomes (Bachtrog, 2011).  Therefore, the absence of detected heteromorphic 

chromosomes cannot be inferred either to support a single locus, epistatic model or to refute 

an early segregating linked multi-locus model.  Indeed, in spinach itself, further genomic 

studies may divulge the location of sex determining genes imbedded in non-recombining 

chromosomal regions.  However, more importantly, a single locus, epistatic systems provide 

a rational bridge between the evolution of monoecy and dioecy commonly found within 

single clades (Diggle et al., 2011; Renner, 2014; Ma & Pannell, 2016).  As such, while some 

recent genome studies of the evolution of non-recombining chromosomal regions are highly 

informative (Ming et al., 2007; Iovene et al., 2015), it may prove more productive to use 

combinations of transcriptomic, reverse-genetic, and functional testing approaches to 

dissect the origin of sex determination in the majority of unisexual-flowering species. 
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Supplemental Figure 2.1: Moderate and Severe Masculinization of Female Spinacia oleracea resulting 

from exogenous GA treatment.  (A) Moderately masculinized female flower with two sepals, two stamen, 

and no gynoecia.  (B) Severely masculinized female flower with four sepals, four stamen, and poorly 

developed pistil. White arrow = sepals, blue arrow = stamen, red arrow = stigma. 

Supplemental Figure 2.2: Moderate and Severe Feminization of Male Spinacia oleracea Flowers 

Resulting from PAC Application.  (A) Moderately feminized male flower with two sepals, single stamen, 

and single pistil.  (B) Severely feminized male flower with four sepals but a central pistil.  (C) Rare 

example of stigma and stamen developing from the same tissue. White arrow = sepals, blue arrow = 

stamen, red arrow = stigma. 
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Supplemental Figure 2.3: GAI Neighbor-Joining Gene Tree Estimated from Aligned Predicted Amino 

Acid Sequences.  Numbers on branches refer to branch support from 10,000 bootstrap resampling 

analyses. 
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Supplemental Figure 2.4: Moderate and Severe pWSRi:GAI Knockdown Phenotypes Observed in 

Spinacia oleracea.  (A) Moderate phenotype displaying two sepals, a single stamen and single pistil.  

(B) Range of phenotypes including a severely affected flower with four stamen and a central pistil 

(Top left), moderately affected flower with two sepals and two stamen (Middle right), and mildly 

affected flower with two sepals, single pistil, and single stamen (Bottom center). White arrow = sepals, 

blue arrow = stamen, red arrow = stigma 
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Supplemental Figure 2.5: Full alignment between Spinacia oleracea cv Viroflay genomic extract and 

male and female 5`SpGAI sequences.  Genomic reference highlighted in yellow, dots indicate agreement, 

dashes indicate gaps inserted into reference. 

Supplemental Figure 2.6: Dot plot of Spinacia oleracea cv America and cv Viroflay showing acluster 

of repetitive sequences preceding SpGAI.  Blue box highlights the cv America specific 61bp insertion.  

Blue lines indicate short matches, red lines indicate a match length over 100bp. 
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Supplemental Table 2.1: Primer sequence and resulting amplicon length used in quantification of 

SpGAI and SpPI expression. 

  

Primer Name Sequence Amplicon Length 

SpGAI qP1773F CTGTTAGACTTCTTTGCAGG 149bp 

SpGAI qP1922Rev TTGAACTCAGTGACGAATTG  

SpPI qP449F CAACGATGCTTCAAGAGGAA 156bp 

SpqP605Rev CTTCCCTGTTGGTTTGGTTG  

SpUBQ5 qP5F CAGATTTTCGTGAAAACCC 203bp 

SpUBQ5 qP208Rev TGAAGAGTTGATTCCTTCTG  

DELLA.514 GANACYGTTCAYTATAAYCC  

DELLA.1123R CCRTTYTCYTGSGAGTCRACSAG  
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CHAPTER 3: IDENTIFICATION AND CHARACTERIZATION OF DIFFERENTIALLY 

EXPRESSED GENES IN THE UNISEXUAL FLOWERS OF SPINACIA OLERACEA L. 

INTRODUCTION 

The morphological variation observed between individuals within a population or 

between tissues within an individual is often, but not exclusively, explained in terms of 

alternative gene expression.  By carefully grouping individuals from a population or tissues 

from an individual then generating a transcriptome it is reasonable to expect that transcripts 

identified as differentially expressed between the groups contribute to the morphological 

differences in question.  However, the identified transcripts actually would be a mixture of 

those functionally related to the morphology of interest, correlated to but not necessary for 

morphological differentiation, and false positives.  In order to distinguish among these 

possibilities, it will be helpful to put the identified transcripts into a biological context.   

Alteration of expression patterns can portend developmental events such as embryo 

organization (Mayer et al., 1993), cell lineage (Haecker et al., 2004), and organ identity 

(Meyerowitz et al., 1991).  Genes involved in the aforementioned processes tend to be highly 

conserved transcription factors that initiate a cascade of gene expression.  The plant 

transcription factor LEAFY is a good example as it controls the identity of the floral meristem 

(Weigel et al., 1992), is observed to be highly conserved among plants in both sequence 

(Maizel et al., 2005) and function (Chujo et al., 2003) and alters the expression of numerous 

genes (William et al., 2004).  Identifying genes downstream of important transcriptional 

regulators through traditional methods, such as microarray analysis, can be difficult, time 

consuming, expensive, and/or not available in the species of interest.  However, recent 

advancements in massively parallel sequencing technologies allow investigators to identify 
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large numbers of transcripts that are correlated with a morphology of interest.  Similar to 

traditional methods next gen sequencing only identifies correlated transcripts and does not 

inform directly about the function of said transcripts.  

Dioecious angiosperms, and spinach in particular, are ideal models to investigate the 

relationship between alternative gene expression and morphological development.  

Dioecious species can be grouped by sex with relative ease and the differences in gene 

expression between the groups is therefore expected to reflect unisexual development.  

Many dioecious species, including spinach, are sex labile and with proper stimuli an 

otherwise male individual can produce female flowers and vice versa (Korpelainen, 1998).  

This indicates that unisexual development hinges on the proper expression of male or female 

gene cohorts.   Spinach is a particularly apt model as the differences between male and 

female vegetative growth is minimal while most morphological differences are observed 

after the transition to flowering.  Sampling the inflorescences would presumably maximize 

observation of differential gene expression related to unisexual morphology and 

observations of in situ expression will help put the sequencing data into biological context.   

 Spinach flowers do not produce petals, developing only sepals and one type of 

reproductive organ. The peripheral whorl is fated to become the sepals while the interior 

whorl will develop the androecium or gynoecium.  The first organ to develop from the floral 

meristem is the sepals, the number of which is sex specific (Sather, D Noah et al., 2005).  The 

male flower develops four sepals that remain separate from each other while females 

produce two sepals that often fuse along a portion of their margin.  Male flowers develop 

four stamens in a phyllotaxic pattern while the central area of the meristem flattens.  The 

female flower produces a single carpel from the central meristem that is enveloped by the 



www.manaraa.com

64 

 

sepals with only the stigma exposed (Sather, D Noah et al., 2005).  Both sexes produce small 

clusters of flowers in the leaf axil however, in some males the leaf is significantly reduced in 

size or absent in the upper portion of the flowering branches (Rosa, 1925).   

To characterize genes differentially expressed in unisexual spinach flowers we 

produced a transcriptome from male and female inflorescences.  Transcripts that were found 

to be correlated to sex were analyzed with BLAST and from these data candidate genes were 

selected for further investigation.  Numerous genes identified as differentially expressed via 

transcriptome analysis were confirmed with qRT-PCR of inflorescence tissue and the 

expression pattern of a select few genes were observed with LAMP mediated in situ 

observation. 

METHODS 

RNA isolation, library construction, and transcriptome sequencing 

 Total RNA of inflorescence samples was isolated and purified using a RNeasy Mini Kit 

(Qiagen, Hilden Germany) according to the manufactures’ protocols.  RNA integrity was 

evaluated using an Agilent 2100.  RNAseq libraries were made using ScriptSeq kit 

(Epicenter) following the manufacturers’ protocol.  Poly (A) mRNA was isolated from a total 

input of 5µg of RNA using oligo (dT)-attached magnetic beads according to the manufactures’ 

instruction (Illumina, USA).  Approximately 50ng of purified RNA was fragmented according 

to protocol with the exception that fragmentation at 85°C was reduced from the 

recommended 5 minutes to 30seconds.  First strand cDNA was made using random 

hexamers, then tagged and amplified for 17 cycles using barcoded primers.  Samples sent to 

RTSF Genomics Core at Michigan State University (Lansing, MI) and analyzed with Illumina 

HiSeq 2000.  Raw reads were trimmed, removing sequencing adapters and low-quality bases 
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using Trimmomatic (Bolger et al., 2014) with default settings.  Contigs were generated de 

novo using IDBA-tran (Leung et al., 2013; Peng et al., 2013) with settings for minimum contig 

size of 200 nucleotides.  Differential expression was assessed using RSEM v1.2.24 (Li & 

Dewey, 2011) and EBSeq v1.11.1 (Leng et al., 2013).  Annotation of select differentially 

expressed genes were produced using BLAST2GO (Conesa & Götz, 2008; Götz et al., 2008). 

qRT-PCR of Differentially Expressed Genes 

 Inflorescence RNA from male and female individuals were extracted and purified 

using plant RNeasy Mini Kit from Qiagen.  5μg of RNA was used as template to create first 

strand cDNA using ClonTech RNA to cDNA EcoDry Premix (Takara Bio USA Inc. CA, USA).  

qPCR was performed on an Agilent Technologies Mx3000P machine (Agilent Technologies 

Inc. CA, USA) using iTaq Universal SYBR Green Supermix buffer (BioRad CA, USA). Primer 

sequence information can be found in Table S1.  Amplification conditions were as follows: 

denaturation at 96°C for 10min, then 40 cycles composed of 30s denaturing at 96°C, 

annealing at 55°C for 30s, extension at 72°C for 30s.  Melting point profiles were examined 

to confirm that single PCR products were produced.  Expression values were determined 

with the ΔΔCt method using Ubiquitin 5 (UBQ5) as the internal reference gene (Gutiérrez-

Aguirre et al., 2008).  For all genes analyzed female expression values were set to 1.0 as the 

calibrator sample and male expression reported relative to that value. 

Tissue preparation and LAMP in situ detection 

 Spinach inflorescences were harvested during bolting but before anther dehiscence 

or successful pollination.  Tissue was fixed, embedded in paraffin wax, sectioned and 

prepared for LAMP mediated detection following Sather et. al. 2010, Podushkina et. al. 2019.  

Briefly, inflorescence tissue was fixed for 10-14 hourss at 4°C in Formaldehyde Alcohol 
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Acetic acid (FAA) solution, dehydrated through an ascending alcohol series (70%, 95%, 

100%), followed by Histo-Clear (National Diagnostics) washes. The tissues were imbedded 

in paraffin at 60°C with multiple exchanges of liquid paraffin over a 6 hour time period.  8μm 

tissue sections were adhered to Matsunami TruBOND 380 slides by baking overnight at 45°C 

and carefully stored at room temperature. 

 To prepare the tissue for LAMP mediated in situ gene detection the paraffin 

wax was removed with Histo-Clear washes and rehydrated in a descending alcohol series 

(100%, 95%, 70%, 50%), rinsed in nuclease free water, and equilibrated in tris buffered 

saline (TBS) solution.  Samples were then incubated in Proteinase K (20 µg/mL) at 37°C for 

20 minutes and thoroughly washed in TBS.  The sections were treated with DNase I (1U) at 

37°C for 45min.  A 30μL LAMP reaction (Warm LAMP, New England Biolabs) with gene 

specific primers (Table S3) and 0.15µL digoxygenin-11-dUTP (25nmol) was applied drop-

wise directly onto tissue samples and incubated at 65°C for 45min in a humidity chamber.  

Every 7min the chamber was gently rocked to encourage even distribution of the reaction 

solution over the tissues.  Negative control reactions were assembled with water replacing 

the gene specific primers in the reaction mix.  Slides were then washed in malic acid buffer 

and incubated in 1% dry milk blocking buffer before being challenged with anti-DIG antibody 

conjugated with alkaline phosphatase.  Slides are then thoroughly washed in malic acid 

buffer and incubated in Roche (Basel, SZ) NBT/BCIP solution until precipitate is visible, 

usually within 30 minutes. 

RESULTS 

Transcriptome Production and Analysis 
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Floral RNA was harvested, purified, and sequenced using Illumina HiSeq 2000. The 

resulting fragments were trimmed with trimmomatic using default settings yielding 

13,456,406 and 32,976,700 reads for male and female libraries respectively.  The reads were 

assembled into contigs using IDBA-tran with default settings producing 122,322 male 

contigs and 442,674 female contigs.  The data from both genders were combined to generate 

a single library of contigs.  This resulted in 466,410 contigs.  The gender specific reads were 

then mapped to the combined spinach floral transcriptome library and were then analyzed 

with RSEM (Ver. 1.2.24) and EBseq (Ver.1.11.1) to identify differentially expressed contigs 

(Table S2).   

A total of 165 contigs were identified with higher than 0.95 posterior probability of 

differential expression.  The vast majority of these, 158 were upregulated in male 

inflorescence tissue.  Only 7 were found to be overexpressed in female tissue.  Of these 165, 

88 were identified with BLAST (Table S1).  These included genes involved in stamen organ 

identity (SpAPETALLA3, SpPISTILLATA) that had previously been identified as having male-

specific gene expression (Pfent, Catherine et al., 2005).  Among the remaining male-biased 

expressed, multiple clusters could be readily identified based on functionality (Table 1). 
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Table 3.1 – Male biased BLAST identified genes 
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RT-qPCR Analysis of Unisexual Inflorescences 

In order to corroborate the transcriptome data, we investigated the expression of 

several candidate genes.  Multiple inflorescences from an individual were harvest, pooled, 

and RNA was extracted from multiple male and female individuals.  Expression of selected 

genes was observed via qRT-PCR using the ΔΔCt method with the female samples as the 

calibrator and SpUBIQUITIN 5 as the internal reference gene.  The expression paaterns of 

Aborted Microspores (SpAMS) and Abscisic Acid 8`-Hydroxylase 1-Like (SpABA) were observed 

to be significantly overexpressed in male tissue (p<0.001).  Likewise, NAC Transcription 

Factor 25-Like (SpNAC) and Indol-3-Acetic Acid-Amido Synthetase (SpIAA) are highly 

expressed in male inflorescence (p<0.01).  The mean expressions for Adenine 

phosphoribosyltransferase 1-like (APT), Expansin A26 (Expan), Galacturonosyltransferase-

Like 4 (GAUT), and Pectinesterase/Pectinesterse inhibitor 51 (Pect) were elevated in the male 

samples however, this elevation does not appear significant (Figure 3.1). 
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Figure 3.1 – Relative expression of select genes overrepresented in male samples from RNAseq analysis.  

Genes identified as differentially expressed through in silico techniques were analyzed via qPCR.  

Expression calculated using the ΔΔCt method setting the female data to 1 as the calibrator sample. Error 

bars indicate SD (n = 5 independent samples), asterisks represent p<0.001 (***) and p<0.01 (**) from 

one-way ANOVA analysis. Male samples (n=3) in black bars, female samples (n=3) in grey bars. 

 Similarly, the mean expression of Elongation factor 1-alpha-like (EF1) was reduced 

in males but otherwise not significantly different from female expression levels.  Expressions 

of F-box/LRR-repeat At3g26922-like (Fbox) as well as Female Unknown 1-4 (FemUn1-4) were 

significantly reduced in all male samples (p<0.001), with FemUn3 being the least expressed 

of them all.  The elevated female expression of SpFbox was unexpected as the differential 

expression report indicated increased male expression (Figure 3.2). 

Figure 3.2 – Relative expression of select genes overrepresented in female samples in RNAseq analysis.  

Genes identified as differentially expressed through in silico techniques were analyzed via qPCR.  

Expression calculated using the ΔΔCt method setting the female data to 1 as the calibrator sample. Error 

bars indicate SD (n = 5 independent samples), asterisks represent p<0.001 (***) from one-way ANOVA 

analysis.  Male samples (n=3) in black bars, female samples (n=3) in grey bars. 

Aborted Microspores in situ 
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 AMS (ABORTED MICROSPORES) is a MYC class transcription factor that is required 

for proper androecium development.  When mutated, premature tapetum and microspore 

degeneration, and reduced stamen filament growth were observed in A. thaliana (Sorensen 

et al., 2003).  SpAMS is observed to have 60.6% sequence similarity to AtAMS (Supplemental 

Figure 3.1).  Previously in our laboratory, we observed SpAMS expression in microsporangial 

and tapetal tissues in spinach (Podushkina et al., 2019) using fluorescently labeled primers.  

Instead of gene specific fluorescent primers, we used unlabeled primers and incorporated 

Digoxygenin-11-dUTP bases into the LAMP reaction which was then visualized with an 

alkaline phosphatase conjugated anti-digoxygenin antibody and NBT/BCIP substrate.  Male 

tissue visualized are cross-sections through early anthers (Figure 3.3a, 3.3d) and anthers 

later in development (Figure 3.3b) while the female inflorescence tissues are shown in 

longitudinal section (Figure 3.3c).  SpAMS expression is strong in early anther tissue, both in 

the L1 layer and in the internal premicrosporangial tissue (Figure 3.3a). 
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Figure 3.3 – SpAMS expression in male and female inflorescences.  Shoot apicies were harvest before 

bolting, sectioned and gene expression was visualized with a colorimeteric LAMP reaction. (a) Male 

inflorescence cross-section with expression observed in primordia (P), microsporoangia (MS), and early 

pollen mother cells (PMC).  (b) Male cross-section with tapetum (T) and pollen mother cells stained 

lightly.  (c) Female inflorescence longitudinal section with no significant expression observed.  (d) Male 

cross-section negative control with no observed signal. Scale bars indicate 100μm 

In more developed flowers, the expression level decreases and is not strong 

throughout the anther (Figure 3.3a arrow).  In more mature male flowers, SpAMS is strongly 

expressed in the tapetal tissue (Figure 3.3b) and present but weaker in later stages as pollen 

mother cells develop (Figure 3.3b).  In contrast, we detected no SpAMS expression in the 

inflorescences of females (Figure 3.3c).  As a negative control to test for non-specific binding 



www.manaraa.com

73 

 

of digoxygenein-11-dUTP or anti-digoxygenin conjugates, male tissue sections were 

challenged with LAMP reaction mix without gene specific primers resulting in no detectable 

signal in the male negative controls.  These data are consistent with previous observations 

(Podushkina et al., 2019) and suggest a role for SpAMS in early anther development and later 

pollen development through the expression tapetal and microsporangial tissues. 

Mago Nashi in situ 

 Transcriptome analysis identified a highly expressed, male specific transcript 

predicted to be similar to MAGO NASHI (mago).  Initially found in Drosophila (Boswell et al., 

1991), mago has also been found in C. elegans and humans (Zhao et al., 1998; Li et al., 2000; 

Zhao et al., 2000).  A mago ortholog was identified in rice (Oryza sativa) and expression was 

observed in developing root, leaf and seed tissue via RNA and protein blot analysis 

(Swidzinski et al., 2001).  The spinach ortholog SpMago is observed to have 80.5% sequence 

similarity to AtMago (Supplemental Figure 3.2) whose function in A. thaliana was 

investigated through RNAi.  Among other growth defects, microspore formation, pollen 

production and germination rates, and seed development was compromised in the RNAi-

AtMago plants supporting the importance of AtMago function in reproduction (Park et al., 

2009).  To investigate the expression pattern of SpMago, we performed LAMP based in situ 

with DIG labeled dUTP.  The male secondary inflorescence was sectioned longitudinally with 

primordia clearly visable (Figure 3.4a).  SpMago is strongly expressed in very early male 

inflorescence tissue found in the axils of leaves with less expression observed in the 

neighboring vegetative tissue (Figure 3.4a).  Expression is also observed throughout 

microsporangial tissue but not in subtending filamentous tissue nor sepal tissue (Figure 

3.4b).  In more mature flowers, there is distinct SpMago expression in the tapetum but less 
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expression in pollen mother cells (Figure 3.4a arrow).  No detectable expression was 

observed in a longitudinal section of a well-developed female ovary (Figure 3.4c).  We 

observed no staining on male tissues detected without gene specific primers as our negative 

control (Figure 3.4d).  These data suggest SpMago may function in meristem organization 

and microspore development similar to the A. thaliana ortholog. 

Figure 3.4 – SpMagoNashi expression in male and female inflorescences.  Shoot apicies were harvest 

before bolting, sectioned and gene expression was visualized with a colorimeteric LAMP reaction. (a) 

Male secondary inflorescence longitudinal section with expression observed in  primordia (P) and to the 

left a cross section of an anther with expression in the tapetum (T) and pollen mother cells (PMC).  (b) 

Male cross section with expression observed in microsporangia (MS).  (c) Female inflorescence 
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longitudinal section with no significant expression observed.  (d) Male cross section negative control 

with no observed signal. Scale bars indicate 100μm. 

Fbox in situ 

 Differential expression analysis of unisexual inflorescences identified one gene that 

contained F-box domains and leucine-rich repeats that was highly expressed in females.  This 

predicted gene aligns only 50.3% with an A. thaliana predicted F-box/LRR protein 

At3G26922 however, when aligned to Beta vulgaris, a close relative of spinach, alignment 

was 81.9% to the predicted F-box/LRR-repeat protein XM_019247200.1 (Supplemental 

Figure 3.3a, 3.3b) F-box proteins are understood to function as components of the SCF 

ubiquitin-ligase complexes (so named for the proteins in the complex, Skp I, Cullin, and an F-

box protein), where the F-box protein binds the target for ubiquitin-mediated proteolysis 

(Gray et al., 2002; Risseeuw et al., 2003).  There are 694 F-box proteins in A. thaliana (Gagne 

et al., 2002) and some are known to be involved in hormone signal transduction, specifically 

in response to GA signaling (McGinnis et al., 2003; Dill et al., 2004; Fu et al., 2004) which is 

of critical importance to sex determination in spinach (West & Golenberg, 2018).  To 

characterize gene expression, LAMP mediated in situ gene amplification was performed on 

male in female inflorescence tissue.  SpFbox expression was observed in very early flower 

primordia but not surrounding vegetative tissue (Figure 3.5a).  In later stages of male 

development SpFbox is highly expressed in early microsporangial tissue but is reduced as 

pollen mother cells develop and is eventually restricted to the tapetum as development 

progresses (Figure 3.5b, 3.5a arrow).  Early in female development SpFbox expression is 

observed throughout the ovary with heavy precipitate at the distal portion of the 

integuments and in the early nucellus (Figure 3.5d).  As gynoecial development continues 
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this expression is restricted to integuments and funiculus with expression reduced in the 

nucellus and ovary walls (Figure 3.5e).  As a negative control, male and female tissues were 

challenged with LAMP reaction mix without gene specific primers, no signal was detected 

(Figure 3.5c, 3.5f).  The expression of SpFbox in males appears to decrease during 

development while in females expression is at higher levels and generally expressed in early 

tissue with expression then being restricted to specific tissues within the maturing ovary.  

Figure 3.5 – SpFbox expression in male and female inflorescences.  Shoot apicies were harvest before 

bolting, sectioned and gene expression was visualized with a colorimeteric LAMP reaction. (a) Male 

inflorescence longitutinal section with expression observed in primordia (P).  (b) Male cross section with 

expression observed in microsporangial tissue (MS) and tapetum (T) but less signal from pollen mother 

cells (PMC).  (c) Male cross section negative control with no observed signal.  (d) 20x magnification of 

early female inflorescence longitudinal section signal detected in the nucellus (N), integuments (I) and 

ovary wall (OW).  (e) Female inflorescence longitudinal section with strong signal from the integuments 

and funiculus (F) but less signal from the nucellus and ovary walls. Scale bars indicate 100μm. 

Female Unknown 3 in situ 
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 A number of transcripts found to be overrepresented in female transcriptome 

samples could not be identified through BLAST analysis, one such transcript is 

SpFemaleUnknown3 (SpFemUn3).  The expression of SpFemUn3 was observed to be 

essentially non-existent in male inflorescence tissues as determined by qRT-PCR (Figure 

3.2).  To characterize the expression pattern of SpFemUn3 we performed LAMP mediated in 

situ analysis on male and female inflorescences.  In a longitudinal section of the apical region 

of female inflorescence shows expression of SpFemUn3 was isolated to pre-gynoecial tissue 

while being absent or reduced in neighboring vegetative tissue (Figure 3.6a).  In the ovary, 

SpFemUn3 strong expression was restricted to the nucellus and funiculus while weaker 

signal was detected in the outermost layer of integument tissue. No signal was observed in 

the ovary walls (Figure 3.6b).  In contrast, no significant expression was observed in male 

inflorescences at any stage (Figure 3.6c).  Likewise, female tissue challenged with a LAMP 

negative control reaction without gene specific primers showed no evidence of staining 

(Figure 3.6d).  Consistent with qRT-PCR data SpFemUn3 is female specific and is observed 

very early in gynoecium development as well as during ovary maturation. 
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Figure 3.6 – SpFemaleUnknown3 expression in male and female inflorescences.  Shoot apicies were 

harvest before bolting, sectioned and gene expression was visualized with a colorimeteric LAMP 

reaction. (a) Female inflorescence meristem longitudinal section with expression observed in primordia 

(P).  (b) Female ovary longitudinal section with signal detected in the nucellus (N) distal portion of the 

integuments (I) and slight expression detected in the funiculus (F).  (c) Male inflorescence cross section 

with no detectable signal from any tissue.  (d) Female ovary negative control with no detectable signal.  

Scale bars indicate 100μm. 

Pectinesterase in situ 

Overrepresentation of SpPectinesterase/Pectinesterase Inhibitor 51 (SpPect) in the 

transcriptome analysis was not corroborated by our qRT-PCR observations.  To elucidate the 

discrepancy SpPect expression was analyzed in situ.  In a longitudinal section of a male 
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inflorescence we observe signal associated with vascular tissues and strong signal in early 

male flowers, at later stages signal is seen in stamen tissue but not in sepals (Figure 3.7a).  

Without gene specific primers no signal was observed in a cross section of male tissue 

(Figure 3.7b).  A similar expression pattern was observed in a longitudinal section of female 

inflorescence.  Signal was observed in vascular tissue and early flowers were strongly 

stained, as development continues signal is detected in the nucellus and proximal region of 

the ovary wall (Figure 3.7c). 

Figure 3.7 – SpPectinesterase expression in male and female inflorescences.  Shoot apicies were harvest 

before bolting, sectioned and gene expression was visualized with a colorimeteric LAMP reaction. (a) 

Longitudinal section of male inflorescence with staining detected in early male primordia (P), 

throughout the stamen (S), and light staining near vascular tissue (V).  (b) Cross section of male negative 
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control, no observed signal.  (c) Longitudinal section of female inflorescence, heavy expression observed 

in primordia and throughout the early flower as well as near vascular tissue, at later stages expression 

restricted to proximal portion of ovary wall (OW) and nucellus (N).  (d) Female ovary negative control 

with no detectable signal.  Scale bars indicate 100μm. 

 

DISCUSSION 

 Next generation sequencing technologies yield massive data libraries that allow 

investigators to correlate sequencing data to biological phenomenon.  An intriguing topic of 

study that leverages big data is the elucidation of unisexual development in plants (Harkess 

et al., 2015; Du et al., 2016; Mei et al., 2017; Fu et al., 2018).  Without additional biological 

context for identified genes downstream, functional analysis could be significantly 

hampered by cryptic mutant phenotypes and futile pursuit of correlated but ultimately non-

critical genes.  In this study we generated transcriptome libraries of inflorescences from 

male and female spinach individuals and produced a list of 165 differentially expressed 

transcripts.  To put these into biological context we performed LAMP mediated in situ 

analysis of select candidate genes and report here their expression patterns.   

We began our survey with genes for which expression or function was observed in 

other species.  The function of A. thaliana mago was determined via RNAi and resulted in 

plants of diminutive size with defects in shoot and root meristem organization as well as 

pollen and embryo development (Park et al., 2009).  The expression pattern of spinach mago 

occurred within tissue congruent with function observed in A. thaliana (Figure 3.4) however, 

our investigation offers more precise expression data than previous reports (Swidzinski et 

al., 2001).  The expression pattern of SpFemUn3 is of interest as the transcriptome analysis 
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and RT-qPCR data are in agreement with this gene’s over representation in female samples. 

However, megaBLAST searches yielded no results thus no predicted function could be 

ascertained.  LAMP based in situ observation presented an expected, female-limited 

expression pattern, but more intriguingly, a tissue specific expression pattern.  Spinach 

initiate unisexual flowers thus sex determination in spinach occurs during the transition to 

flowering or during very early in floral development (Pfent, Catherine et al., 2005; Sather, D 

Noah et al., 2005).  SpFemUn3 was detected in the pre-floral/early floral meristem tissue but 

not in surrounding vegetative tissues at this early and its specific expression implies that 

SpFemUn3 may have some function in female flower identity.  We also observed female 

specific expression in later stages of ovary development, particularly within the nucellus.  In 

most angiosperms the nucellus provides nutrients to the developing megagametophyte and 

is consumed during this process (Werker, 1997).  Chenopodium quinoa, a close relative to 

spinach, is observed to have a nucellus that is not consumed but persists after fertilization, 

developing into perisperm and functioning as the nutrient resource for the seed (Prego et al., 

1998).  The quinoa perisperm function is analogous, but not homologous to the heavily 

studied endosperm function in species of grain (Burrieza et al., 2014).  Programmed cell 

death (PCD) is a required process in the development of both the grain endosperm (Radchuk 

et al., 2010) and the quinoa perisperm (López-Fernández & Maldonado, 2013).  The in situ 

analysis of SpFemUn3 in combination with our understanding of analogous structures in 

related species allow one to develop testable hypotheses regarding the function of this 

spinach specific gene. 

Our transcriptome analysis found KQ187820 was overrepresented in male samples 

and identified as probable pectinesterase/pectinesterase inhibitor 51 via megaBLAST 



www.manaraa.com

82 

 

(Supplemental Table 1).  Pectin is a critical element of the cell wall and thus undergoes 

modification by pectinesterase and related enzymes during plant growth (Ridley et al., 

2001).  During dehiscence the spinach stamen rapidly extends the filament beneath the 

anthers causing the anthers to be projected above the rest of the flower.  This process 

requires reorganization of the cell wall and thus male flowers would be expected to display 

elevated expression of genes such as SpPect.  However, SpPect expression was observed to 

be elevated in males on average but was not significantly different compared to female 

expression (Figure 3.1) somewhat contradicting the transcriptome analysis.  Using LAMP 

mediated in situ detection of SpPect expression, we did not observe significantly different 

staining between male and female inflorescences (Figure 3.7).  In both sexes, SpPect signal 

was strongly detected in young floral tissue which is presumed to be growing quickly thus 

requiring elevated cell wall modification activity.  Spinach male inflorescences are typically 

larger than a female inflorescence.  Were cell mass responsible for the size differences one 

would expect SpPect to be overrepresented in male samples.  Unfortunately, it is unclear if 

this difference in size can be accounted for by cell number or cell mass.  Additionally, the 

discrepancy between the transcriptome and qRT-PCR could be attributed to the methods 

themselves.  The former relies on read count differences while the later normalizes across 

samples with an internal control, thereby reducing the magnitude of differential expression 

between sexes.  SpPect is likely an example of an overexpressed gene that correlates to the 

morphology of interest but is unlikely to be critical for its development.  

Similar to SpPect data our observations of SpFbox expression using different methods 

yields conflicting though not unexplainable results.  The transcriptome data identified 

SpFbox as overrepresented in male tissue however, qRT-PCR data indicated significant over 
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expression in female samples.  LAMP mediated in situ observations of SpFbox expression in 

tissues from both sexes help explain the disagreement.  In the early stages of flower 

development SpFbox expression is observed in the reproductive tissues of both sexes (Figure 

3.5a, 3.5c).  As development continues, expression in the male is reduced eventually being 

limited to the tapetum with slight expression in the pollen mother cells (Figure 3.5d).  In 

developed females the SpFbox expression is reduced in the ovary walls and nucellus but 

remains strong in the funiculus and integuments (Figure 3.5e).  Slight differences in the 

developmental stage of the tissues used for transcriptome and RT-qPCR analysis could 

account for the conflicting results.  Less mature inflorescences would be expected to 

overrepresent SpFbox expression in male tissue while more developed tissue is expected to 

have a female bias.  The LAMP mediated in situ gives insight to the spatial and temporal 

dynamics of gene expression that neither RNAseq or RT-qPCR can provide.  

Our RNAseq analysis produced a preponderance of female reads, nearly 2.5 times 

more than male reads.  The excess female reads likewise produced an excess of female 

contigs yielding approximately 3.6:1 ratio.  Due to this imbalance the differentially expressed 

transcripts were biased to identify overrepresented male transcripts, indeed only 7 of the 

165 transcripts were found to be overrepresented in females.  Despite these shortcomings 

the data produced sensible gene candidates given some biological context.  Previous work in 

our lab has identified the differential expression of GIBBERELLIC ACID INSENSITIVE (SpGAI) 

a typically repressive transcription factor that mediates gibberellic acid (GA) hormone 

response, as critical for unisexual development in spinach (West & Golenberg, 2018).  Males 

were observed to have roughly half the SpGAI expression as females, this reduction of SpGAI 

in males suggests that in addition to initiating ‘maleness’ a GA response would be initiated 
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in parallel.  Crosstalk amongst hormones has long been observed (Weiss & Ori, 2007) and 

typically, GA acts antagonistically toward abscisic acid and synergistically with auxin.  Our 

differential expression analysis detected enzymes responsible for the degradation of abscisic 

acid (Abscisic acid 8`-hydroxylase 1-like) and synthesis of auxin (Indole-3-acetic acid-amido 

synthetase) were overrepresented in males (Table 1).  This observation fits nicely with our 

understanding of the GA response pathway and male development in spinach.  GA is also 

understood to be involved in stress response (Abbasi et al., 2004; Huerta et al., 2008) which 

could explain the presence of numerous genes affiliated with stress (Table 1). 

Generating large sequence databases will only get more efficient and affordable as 

technology advances.  Researchers can leverage this to investigate key differences between 

individuals in a population and/or tissues within an organism.  Here we present sex specific 

transcriptomes and identified differentially expressed genes presumably involved in 

developing the morphological differences observed in spinach flowers.  In situ analysis of 

select genes provide much needed context to address discrepancies in the transcriptome and 

qRT-PCR analysis.  Additionally, the in situ observations will narrow the focus of future 

efforts to elicit the function of the genes identified in this study. 
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SpAbAHydroxqP.318F TTACCATGCTAAGCTG 

SpAbAHydroxqP.585R TTCTCTGTAATTCACCTCG 

SpAMSqP.86F CTATCTCAGATAGTGATCCTC 

SpAMSqP.322R GGTCTTTTTCTTCCTTCTG 

SpAPT1qP.3F CATCTCCATTTTGTCTGTTC 

SpAPT1qP.192R TGTTGAAAGATACAAGGGG 

SpEF1qP.481F CTTCAGACTCAAAGAATGAC 

SpEF1qP.693R CATTCTTCAAGAACTTAGGG 

SpExpansinqP.65F GATGTTAAGATTAAGCCGTC 

SpExpansinqP.268R GAAGTTTTTGCTGCCTTC 

SpFboxqP.901F TCTCTTACCTTATACCTTGG 

SpFboxqP.1113R GATGAAGTTTTCCTCTTGAG 

SpFemunknown1qP.279F CTACCCCTTCAACTACTATC 

SpFemunknown1qP.489R CCAGATTACAAACAAAGTCC 

SpFemunknown2qP.50F ATAGGAACCTGATTTCTGG 

SpFemunknown2qP.257R CCACAAATCAATAGACTCAG 

SpFemunknown3qP.281F TGGTCATAAGTTCTGGAC 

SpFemunknown3qP.490R AGAGGTACTAGATGAGGC 

SpFemunknown4qP.1F GTATTTATAGGCGATTCTTGCG 

SpFemunknown4qP.204R CCTAATTGCTATACCCAGGTAC 

SpGAUTqP.31F GTCTTCTAACCATGTTCTTG 

SpGAUTqP.241R AGCTGTTGATCATAGATGG 

SpHS70_3alphaqP. 2958F GGGTGAAGATAAAGAGTTTG 

SpHS70_3alphaqP.3164R GTAGGCTCGTTAATAATTCG 

SpIAASynqP .4668F CTAGAGTACACTAGCTACG 

SpIAASynqP.4878R CATTCTCCACTACCTTAATC 

SpNACLqP.221F TTAGTCCAAGAGATAGGAAG 

SpNACLqP.425R CGATACTCATGCATAATCC 

SpPectinestqP.3595F GCAGGAATTAGTTTGCTC 

SpPectinestqP.3804R CAAGCACAAGAACTACTTAG 

SpUBQ5qP.5F CAGATTTTCGTGAAAACCC 

SpUBQ5qP.208R TGAAGAGTTGATTCCTTCTG 
 

Supplemental Table 3.1 – List of primers used for qPCR survey.  The number following the gene name 

indicates primer position relative to the start codon and sequence listed in 5` to 3` orientation. 

 

SpAMS.782F3   GGGACTCGTTGCTAGAGG 

SpAMS.959B3   AGTGGTTGTGGAAAGGAC 

SpAMS.800FIP  TCCACTTCCATTTTCTGATGATGCTCAACACGTAATCAAGCAGGA 
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SpAMS.936BIP    CGACAGCAGAATCAGAATCAGAATCCTATATGATGGTTGTGAATGTGT  

SpFBox.192F3    GCCTGATGCTATCCTTCA 

SpFBox.399B3    AGACTTGTTGATGATGAGGA 

SpFBox218.FIP    TCCCTCTCCATCGTTTGGAAATTTCTCTCTAATCCCAATAAAATCCG 

SpRBox.343BIP   CTGCTGATCATCTTGAATATGCCAAGAAAACTCATTTGGTGTCTG 
SpFBox.315LB    AGACTTTGGAGAAGAGTTTGCCAAA 

SpFemUn3.173 F3 GCACTCTGGGTCAGTACGAT 

SpFemUn3.369 B3 AGTAGGGACCCCAAACTGTA 

SpFemUn3.250 FIP GGAACACGGGAGGTTCTGGAAACTCATCTTCCTCCGAGGGA 

SpFemUn3.286 BIP CCTTAGCGGCTAGGCCGTTCTTGGGCATGACACCAAAGA 

SpFemUn3.213 LF TCTTCTACAAGAAGAACAAATCCCC 

SpFemUn3.307 LB GTGCCCTTTTCAAGCTCTTACA 

Mago Nashi.340 F3 TGAAGGAAGATGATAACCTCTG 

Mago Nashi.531 B3 AGTGAAGTGAGATAAGTGAGAA 

Mago Nashi.426 FIP ATGAGATACGCTCATTGCCCAGAACCTGATGTTATTGGGAGG 

Mago Nashi.446 BIP TTCCCTTGCTGATGTCCAGAAACACTTCAAGTCCTGAACAA 

Mago Nashi.446 LB GTAGTAAAGATCCCGAAGGACTTC 

SpPectinase.283 F3 GGTCAGTCTATGGTCCAGCA 

SpPectinase.496 B3 TGGAGGCCGAATCATTCAC 

SpPectinase.362 FIP TTCCCCAGAACCTCAAGGCACCCGACTCTGCCCATAATCCT 

SpPectinase.414 BIP ACGTGGGAAGCTAAAGGACGCAGACCTGACCAGCAGTCAT 

SpPectinase.435 LB ACGTGCATGGACTAGCGC 
Supplemental Table 3.3 – List of primers used for LAMP mediated in situ hybridization.  The number 

following the gene name indicates primer position relative to the start codon and sequence listed in 5` 

to 3` orientation. 
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CHAPTER 4: DIRECT INTERACTION BETWEEN SPINACIA OLERACEA L. LEAFY AND 

GIBBERELLIC ACID INSENSITIVE TRANSCRIPTION FACTORS OBSERVED IN VIVO AND IN 

PLANTA 

INTRODUCTION 

Although the majority of angiosperms are hermaphroditic, a small but significant 

number of species segregate the staminate and pistillate flowers between individuals and 

are described as dioecious.  The multiple evolutionary origins for this reproductive strategy 

exclude a unifying theory to explain the mechanism by which dioecious plants accomplish 

sexual segregation.  In Spinacia oleracea, cultivated spinach, we have proposed a mechanism 

in which expression of GIBBERELLIC ACID INSENSITIVE (SpGAI) is critical for feminization 

while inhibition of SpGAI is observed to masculinize the individual (West & Golenberg, 2018).  

Previous studies demonstrated that the B class floral organ identity genes, SpPI and SpAP3, 

are expressed only in males and act to trigger stamen development in third whorl primordia 

as well as to suppress fourth whorl organ initiation (Pfent, Catherine et al., 2005; Sather et 

al., 2010).  The functional analysis of SpGAI through inhibition of proteasome degradation or 

decreased gibberellic acid (GA) versus SpGAI expression or increased GA indicates that 

SpGAI feminizes spinach floral development through epistatic suppression of SpPI and 

SpAP3 (West & Golenberg, 2018). In Arabidopsis thaliana, the inflorescence identity gene 

LEAFY (LFY) is a direct activator of B class floral organ identity gene activity (Weigel et al., 

1992).  To unite these observations, we hypothesize that a direct interaction between SpGAI 

and LEAFY (SpLFY) may regulate alternative unisexual development in spinach.  However, it 

is unknown if these transcription factors interact physically or through indirect means.   
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SpGAI is a member of the GRAS domain transcription factor family and possesses a 

DELLA motif, a conserved 17 amino acid sequence near the N-terminus.  DELLA transcription 

factors have been observed as the main elements affecting a response to the phytohormone 

gibberellic acid (GA).  Typically, DELLA transcription factors inhibit expression of target 

genes and upon reception of the GA signal are polyubiquitinated at the DELLA motif and 

subsequently degraded via the 26S proteasome (Spartz, Angela K & Gray, William M, 2008; 

Sun, 2010).  In contrast to the five DELLA proteins in Arabidopsis thaliana (Lee et al., 2002) 

only one is found in spinach.  Thus, we presume SpGAI to be the main transcription factor 

involved in GA response (West & Golenberg, 2018).  In A. thaliana DELLA proteins have been 

observed to interact physically with CONSTANS (CO), a critical member of the photoperiod 

pathway of flowering (Xu et al., 2016) and FLOWERING LOCUS C (FLC), a critical member of 

the vernalization pathway of flowering (Li et al., 2016) both of which are important 

transcription factors upstream of LEAFY (LFY).  Interestingly, a portion of the cis regulatory 

region preceding LFY was found to be required for GA mediated flowering under short day 

conditions (Blazquez & Weigel, 2000) and this segment was found to interact with AtMYB33 

in a GA dependent manner (Gocal et al., 2001), but we were unable to find reports of DELLAs 

directly interacting with MYB33 or LFY.   

LFY expression is observed to be a key factor in the transition from vegetative growth 

to flower development (Schultz & Haughn, 1991).  LFY expression is initiated by 

SUPPORESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1), a transcription factor that 

integrates flowering signals from numerous pathways including the photoperiodic and 

vernalization pathways (Lee et al., 2000; Onouchi et al., 2000; Yoo et al., 2005).  Once 

expressed, LFY interacts with floral organ identity genes APETALA 1 (AP1) (Mandel & 
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Yanofsky, 1995; Wagner et al., 1999), AGAMOUS (AG) (Huala & Sussex, 1992), and APETALA 

3 (AP3) (Weigel & Meyerowitz, 1993) with the help of UNUSUAL FLOWER ORGANS (UFO) 

(Lee et al., 1997) all of which interact to define the organs of the flower (Coen & Meyerowitz, 

1991; Pelaz et al., 2000). 

Spinach develops unisexual flowers from inception and does not have a transient 

hermaphroditic phase suggesting that the sex of the flower is determined at some point 

during the initiation of the flower.  Previous work in our lab has found that expression of 

SpGAI to be critical for the development of female flowers and when SpGAI expression is 

reduced in females with VIGS treatment male flowers begin developing upon an otherwise 

female individual (West & Golenberg, 2018).  Our model suggests that in female spinach 

SpLFY promotes the expression of the B and C class genes as expected from A. thaliana 

models however, the presence of SpGAI inhibits the expression of only the B-class genes thus 

preventing the development of male organs but not other flower organs.  In male spinach 

SpGAI expression is lower than in females which may allow SpLFY to interact with its 

canonical targets.  The combinatorial expression of B- and C-class genes initiate the 

androecium as would be expected however, the spinach B-class genes are observed to have 

a novel function that inhibit the development of the gynoecium (Sather et al., 2010).  To 

better understand how the spinach B-class genes are selectively initiated we need to explore 

how SpGAI prevents SpLFY from initiating B-class expression in females.  SpGAI may bind 

SpLFY directly preventing its interaction with B-class gene promoters.  We begin exploring 

possible direct interactions between SpGAI and SpLFY utilizing an in vivo yeast two-hybrid 

screen and in planta with a bimolecular florescence complementation screen.   
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METHODS 

Generation of mutant SpLFYp-q and SpGAIΔDELLA 

Site-directed mutagenic PCR was used to generate a base pair substitution in SpLFY 

that would result in a replacement of the proline residue at position 369 in the polypeptide 

with a glutamine residue and replace the stop codon with a valine residue.  Mutagenic 

primers were designed with an 18bp overlap that included the desired base substitution.  

Two separate PCR reactions were performed designed to amplify SpLFY from the start codon 

to the mutation site in one reaction using LFY F and LFYp369q Rev primer pairs, and from 

the mutagenic site to the stop codon in the second reaction using LFYp369q F and LFY NSC 

Rev primer pairs, all primer sequences listed in Table S1.  The reactions were cleaned using 

Wizard SV PCR clean up kit (Promega) and ran on 1.5% agarose gel to confirm amplification 

of desired product.  The cleaned products were combined and used as template for a reaction 

to anneal the separate halves and amplify the full length, mutated SpLFY amplicon using LFY 

F and LFY NSC Rev primers.  The product size was checked on a 1.5% agarose gel, cleaned 

using the Wizard SV PCR clean up kit, and cloned into pDONR/Zeo with a BP clonase reaction 

following manufacturer’s instructions (Invitrogen). The reaction product was transformed 

into DB3.1 competent cells following standard heatshock protocol.  Successful 

transformation was selected for on 1.5% LB agar plates with zeocin (30µg/mL).  A PCR 

screen using gene specific primers confirmed positive transformation and colonies 

harboring an insert of the proper size were cultivated and used to produce purified plasmid, 

sanger sequencing was used to check the fidelity of our site directed SpLFYp369q mutation.  
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A similar approach was used to generate a mutated SpGAI encoding clone.  The 

construct was designed to delete the region encoding for the 17 amino acid DELLA motif 

(DELLAVLGYKVRSSDMA).  Sequence information for the following primers can be found in 

Table S1.  A fragment from nine bases before the start codon to position 123 in the coding 

sequence was amplified.  A second fragment was generated from position 178 to the end of 

the gene.  The forward primer for the second fragment included a 13 nucleotide 5’ linker that 

complemented the 3’ end of the first fragment.  The reverse primer mutated the stop codon.  

The fragments were cleaned as above and used together as templates to create a single 

fragment using forward and reverse primers with BP clonase extensions.  Cloning into 

pDONOR/zeo was performed as described above and the sequence of the clone was verified 

by sequencing. 

Cloning into Yeast2Hybrid and BiMolecular Florescent Complementation Vectors 

Genes of interest were initially cloned into pDONR/Zeo vectors.  PCR amplification 

was used to attach attB recognition sequences to the 5` and 3` ends of our genes of interested 

with primers listed in Table S1.  The PCR product was cleaned with Wizard SV Gel and PCR 

clean up kit (Promega) and shuttled into the pDONR/Zeo vector facilitated by a Gateway BP 

reaction according to the manufacturers protocol (Invitrogen).  These constructs were used 

to transform E. coli via standard heat shock method and colonies were screened for positives 

on 1.5% (g/v) LB agar with zeocin (30µg/mL).  The inserts were then transferred from 

pDONR/Zeo versions into pNLexAttR, pJZ4attR, pDEST-VYCE, and pDEST-VYNE vectors with 

the Gateway LR reaction, and the plasmid constructs transformed into E. coli and selected on 

LB agar plates with appropriate antibiotics.   
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Yeast2Hybrid Screen 

pNLexAattR vectors with the genes of interest were used to transform yeast strain 

RFY306 (MATa, his3A200, leu2-3, lys2A201, ura3-52, trplA::hisG) (Finley & Brent, 1994).  The 

transformed yeast will express genes of interest fused to the LexA DNA binding domain. 

pJZ4attR vector species were transformed into RFY231 (MATα, trp1Δ::hisG, his3, ura3-1, 

leu2::3Lexop-LEU2) which will produce our genes of interest fused to the B42AD 

transcription activation domain (Kolonin & Finley, 1998).  All yeast were transformed 

following the standard LiOAc method, positive transformants were selected by plating on SD 

-ura -his (for pNLexAattR) or SD -ura -trp.  We performed yeast two-interaction assay 

through mating the alternatively transformed strains following the protocol described 

previously (Kolonin et al., 2000).  Positive protein interactions were identified by growth on 

leucine drop-out media.    

BiMolecular Florescent Complementation in Onion  

 Agrobacterium tumefaciens strain GV3101 with C58C1/pMP90 background was 

transformed via heatshock with BiFC vectors p DEST-VYCE and p DEST-VYNE (Waadt et al., 

2008) harboring genes of interest and selected on YEB agar plates containing gentamycin 

(20µg/mL), rifampicin (50µg/mL), and kanamycin (30µg/mL).  Transformed A. tumefaciens 

was used for transient expression of gene constructs in onion epidermal cells as previously 

described by Sun et al. (2007).  In brief, transformed A. tumefaciens was grown to saturation 

in YEB medium  then an aliquot was diluted 1/10 into media containing 5% (g/v) sucrose, 

100mg/L acetosyringone and 0.01% (v/v) Silwet-77 and incubated with onion scales for 12-

24hrs at 28°C with gentle agitation.  The onion scale was then transferred to ½ Murashige 
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and Skoog 0.7% (g/v) agar plates and incubated at 28°C for 24-48hrs.  For observation, onion 

scales were washed in deionized water, epidermal layer was gently peeled and transferred 

to a glass slide.  The epidermis was then observed under a uV microscope using Leica model 

DM5500B. 

RESULTS 

Yeast Two-Hybrid Analysis 

 We begin exploring the possible direct interaction of SpLFY and SpGAI with a yeast 

two-hybrid (Y2H) screen.  A major benefit of the method is the ability to test numerous 

potential interactions in parallel.  In addition to SpLFY and SpGAI we were interested in 

testing for any unexpected interactions between SpUFO, SpAP3, and SpPI as well as the 

mutants we constructed SpLFYp-q and SpGAIΔDELLA.  The SpLFYp-q mutant substitutes the 

amino acid proline for a glutamine at the 369th position in the polypeptide.  This region is 

predicted to function in protein-DNA interactions and by replacing a nonpolar residue with 

a polar amino acid we hope to disrupt this activity.  The SpGAIΔDELLA mutant had the 

conserved DELLA motif removed from its N-terminal end, this motif is understood to be 

polyubiquitinated which tags the transcription factor for degradation (Dill et al., 2001).  The 

expression of all genes of interest is driven by a GAL4 promoter.  As such, YPD dropout plates 

with glucose as a carbon source should not activate gene expression and any colonies on 

glucose containing plates represent false positive interactions.  Unfortunately, the LexA DNA 

binding domain fused with SpPI and SpUFO produced robust colonies when plated on 

glucose, while the SpGAIΔDELLA and SpLFY LexA fusions produced sparse colonies 

(Supplemental Figure 1).  No autoactivation was observed in any of the genes fused to the 



www.manaraa.com

96 

 

B42AD transcription activating domain on the glucose plates including SpPI and SpUFO 

(Supplemental Figure 1).   

 When plated on YPD dropout plates with galactose, gene expression is activated and 

physical interaction between genes of interest is expected to result in growth.  Due to the 

autoactivation observed on glucose plates the colonies produced via interaction with the 

LexA fused SpPI and SpUFO series are ignored.  The LexA fused SpGAIΔDELLA grown on 

galactose plates produced sparse colonies mimicking growth observed on the glucose plates 

indicating no interaction with any genes of interest (Supplemental Figure 1).  SpLFY fused 

with the LexA DNA binding domain produced evidence of multiple interactions however, 

when fused with the B42AD transcriptional activation domain no reciprocal interactions 

were observed (Figure 4.1).  SpLFY physically interacts with SpGAI and SpGAIΔDELLA 

indicating protein-protein binding does not require an intact DELLA motif.  SpLFY also 

interacts with SpUFO which is in agreement with previous observations in A. thaliana (Levin 

& Meyerowitz, 1995).  Physical interaction between SpPI and SpLFY is also observed.  

Interestingly, SpLFY was not observed to form a dimer with SpLFY as reported elsewhere 

(Siriwardana & Lamb, 2012) or to interact with the mutant SpLFYp-q.  All of the interactions 

observed involving SpLFY were not seen in the SpLFYp-q mutant suggesting our engineered 

mutation successfully altered wild type function.  In contrast, none of the LexA fused SpGAI 

combinations produced evidence of interaction.  
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Figure 4.1 – Yeast two-hybrid screen, galactose plate.  pNLeXAattR species contain the LexA DNA 

binding domain upstream of the gene of interest.  pJZ4attR species contain B42AD activation domain 

upstream of the genes listed.  Matings were plated on YPD –leu –his –ura –trp with galactose, growth 

indicates successful interaction between indicated proteins. 

 BiMolecular Fluorescence Complementation  

 The yeast two-hybrid assay is an excellent and high throughput method for screening 

protein interactions, but it is not without drawbacks.  Notably relevant to our study is the 

possibility for autoactivation when transcription factors are being screened as well as the 

lack of rescue/signal in reciprocal combinations.  Although these shortcomings can explain 

the results observed in the yeast two-hybrid analysis it certainly casts doubt on the 

interactions characterized.  In order to confirm the observations made in vivo with the yeast 

two-hybrid screen, we chose an in planta Bimolecular Florescence Complementation (BiFC) 

analysis.  This method is beneficial as the transcription factors in question will be challenged 
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in an environment more closely resembling wild type circumstances in not only intracellular 

conditions but also the potential presence of orthologous versions of hitherto unknown co-

factors.  We began by co-infiltrating onion with pDEST-VYCE:SpAP3nmb and pDEST-

VYNE:SpAP3nmb serving as our negative control.  The brightfield DIC image shows healthy 

onion cells with a nucleus clearly visible (Figure 4.2a) while the fluorescent darkfield image 

shows no indication of significant signal (Figure 4.2b) and no interaction is observed in the 

overlay image (Figure 4.2c).  To serve as a positive control we used pDEST-VYCE:SpAP3nmb 

and pDEST-VYNE:SpPInmb as they are understood to form a heterodimer (Riechmann et al 

1996).  Similar to the negative control, although at a higher magnification, healthy onion cells 

with clearly visible nuclei are observed (Figure 4.2d).  However, in the fluorescent darkfield 

we observe strong and localized signal (Figure 4.2e) and when overlaid with the brightfield 

image the fluorescent signal is being produced in the nuclear region of the cell (Figure 4.2f). 

Figure 4.2 – In Planta Bimolecular Florescence Complementation Controls.  (a-c) pDEST-

VYCE:SpAP3nmb pDEST-VYNE:SpAP3nmb co-transfection series.  a) Brightfield DIC of onion tissue.  b) 

Florescence darkfield with green false color.  c)  Overlay of a and b.  d-f) pDEST-VYCE:SpAP3nmb pDEST-
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VYNE:SpPInmb co-transfection series.  d)  Brightfield DIC.  e) Florescence with false color.  f)  Overlay of 

d and e.  Scale bar is 100µm. 

In order to test for direct interaction of SpLFY and SpGAI and strengthen our 

observations from the yeast two-hybrid screen we co-infiltrated onion epidermal tissue with 

SpLFY and SpGAI.  In agreement with the yeast two-hybrid assay we observed fluorescent 

signal when onion epidermal tissue was co-infiltrated with pDEST-VYCE:SpLFY  and pDEST-

VYNE:SpGAI (Figure 4.3b) and this signal was confined to the nucleus of the cells (Figure 

4.3c).  This indicates a direct interaction between the two transcription factors and 

corroborates our yeast two-hybrid findings.  Previous work had identified UFO as being 

important for LFYs activation of B-class genes (Lee et al., 1997).  To test if this interaction is 

direct and conserved in spinach we co-infiltrated onion scales with pDEST-VYCE:SpLFY and 

pDEST-VYNE:SpUFO.  We observed discrete fluorescent signal indicating a physical 

interaction between SpLFY and SpUFO (Figure 4.3e) and this signal was localized to the 

nucleus (Figure 4.3f). 
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Figure 4.3 – In planta co-transfection of SpLFY with SpGAI and SpLFY with SpUFO.  a-c)  pDEST-

VYCE:SpLFY pDEST-VYNE:SpGAI co-transfection of onion tissue.  a) Brightfield DIC.  b) Darkfield 

florescence with green false color.  c) Overlay of a and b.  d-f) pDEST-VYCE:SpLFY pDEST-VYNE:SpUFO 

co-transfection.  d) Brightfield DIC.  e) Darkfield florescence with green false color.  f) Overlay of d and 

e.  Scale bar is 100µm. 

Our model suggests SpGAI prevent the activation of B-class genes and we have 

observed that SpLFY and SpGAI interact physically as well as a direct interaction of SpLFY 

and SpUFO.  To explore a possible interaction between SpUFO and SpGAI we co-infiltrated 

onion scales with pDEST-VYCE:SpGAI and pDEST-VYNE:SpUFO.  Strong signal was observed 

in the fluorescent darkfield imaging (Figure 4.4b) and when overlaid with the brightfield 

image the signal is localized to the nucleus (Figure 4.4c).  The ability of SpLFY, SpGAI, and 

SpUFO to interact with one another opens the possibility for heteromultimeric complexes.  

Previous work has shown that in A. thaliana LFY is understood to form homodimers that are 

essential for proper function (Siriwardana & Lamb, 2012).  To test for potential 

homodimerization of SpGAI we co-infiltrated onion with pDEST-VYCE:SpGAI and pDEST-

VYNE:SpGAI.  Although the onion cells appear healthy with nuclei clearly visible (Figure 

4.4d) no fluorescent signal above background levels were observed (Figure 4.4e-f).  Thus, it 

does not appear that SpGAI is able to form homodimers. 

Figure 4.4 – In planta co-transfection of SpGAI and SpUFO as well as SpGAI and SpGAI (Figure on next 

page).  a-c) pDEST-VYCE:SpGAI pDEST-VYNE:SpUFO co-transfection of onion tissue.  a) Brightfield DIC.  

b) Darkfield florescence with green false color.  c) Overlay of a and b.  d-f) pDEST-VYCE:SpGAI pDEST-



www.manaraa.com

101 

 

VYNE:SpGAI co-transfection.  d) Brightfield DIC.  e) Darkfield florescence with green false color.  f) 

Overlay of d and e.  Scale bar is 100µm. 

DISCUSSION 

 Spinach plants are unisexual from floral initiation and we have found the 

transcription factor SpGAI is critical for alternate sex-determination.  Elevated expression of 

SpGAI in females inhibits activation of the B-class genes. When female SpGAI expression is 

transiently knocked-down, male flowers begin to develop (West & Golenberg, 2018).  

Expression of the B, C, and E class floral organ identity genes is understood to be activated 

by LFY (Irish, 2010) which opens the possibility that SpGAI interacts with SpLFY and 

prevents the activation of B-class genes in spinach.  To explore this possibility, we utilize a 

yeast two-hybrid (Y2H) screen and bimolecular fluorescence complementation assay (BiFC) 

to detect physical interaction between the transcription factors of interest.   

 Our observations from the Y2H screen indicates direct interaction between SpLFY 

and SpGAI, SpGAIΔDELLA, and SpUFO (Figure 4.1).  To our knowledge this is the first 
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observation of direct interaction between orthologs of LFY and DELLA family transcription 

factors.  The interaction between SpLFY and SpGAI does not require the presence of the 

characteristic DELLA motif as evidenced by the SpLFY – SpGAIΔDELLA Y2H combination.  

The DNA binding domain of LFY was identified via deletion analysis to stretch from amino 

acid 320 to 507 within the highly conserved C domain (Maizel et al., 2005).  To study the 

potential effect of DNA binding on function we designed a mutant replacing a proline at the 

369th position with glutamine.  Interestingly, all SpLFY interactions were abolished in the 

SpLFYp-q mutant suggesting that the single amino acid replacement was enough to abolish 

protein interactions.  To confirm our initial observations many of the interaction assays were 

repeated in planta utilizing a BiFC screen.  We observed SpLFY interacting with SpGAI and 

SpUFO (Figure 4.3) corroborating data from the Y2H screen.  Additionally, we observe SpGAI 

to interact with SpUFO in planta but not in the yeast two-hybrid assays suggesting that plant 

specific factors may be required to facilitate this interaction.  From these combined data it 

appears that SpGAI interacts directly with SpLFY and SpUFO.    

LFY is integral for proper flowering as its expression is the culmination of pro-

flowering signals from multiple pathways responsible for determining how permissive the 

external and internal environments are to reproduction.  Briefly, the main pro-flowering 

signals are represented by CONSTANS (CO) which activates expression of FLOWERING LOCUS 

T (FT) which in turn activates SUPPORESSOR OF CONSTANS OVEREXPRESSION 1 (SOC1), the 

generally repressive of FLOWERING LOCUS C (FLC) can inhibit the expression of both FT and 

SOC1.  Once expressed, SOC1 then activates LFY expression and a commitment to flowering 

has been made.  LFY will then initiate the expression of floral organ identity genes (Coen & 

Meyerowitz, 1991; Pelaz et al., 2000).  DELLA transcription regulators have been found able 
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to repress the activation of LFY through inhibition of the pathway at various points.  Recently, 

evidence has shown that DELLAs is able to bind CO and FLC directly.  Binding of CO 

sequesters and prevents CO from activating downstream targets like FT (Xu et al., 2016).  

When interacting with FLC, the DELLA-FLC complex has enhanced repression of SOC1 and 

FT (Li et al., 2016).  Additionally, DELLAs have been known to inhibit FT and SOC1 through 

indirect pathways for approximately a decade (De Lucas et al., 2008; Wang et al., 2009; Wu 

et al., 2009; Kim et al., 2012; Kumar et al., 2012; Yu et al., 2012).  Thus, DELLAs can modify a 

plant’s ability to flower through multiple pathways by suppressing activators of pro-flower 

signaling and suppressing the signal integrators themselves.  DELLAs are also able to 

influence floral development after a commitment to flowering has been made.  The AP1 

transcription factor that act synergistically and downstream of LFY has been observed to 

initiate expression of GA3ox1, which encodes an enzyme controlling the rate-limiting step in 

GA production, as well as the RGA-LIKE2 a member of the A. thaliana DELLA family 

(Kaufmann et al., 2010).  The interaction between SpLFY and SpGAI must be confirmed in 

other organisms and its functional relevance put into the context of transition to flowering 

and development of floral organs.   

Consistent evidence for interaction between SpLFY and SpGAI both in vivo and in 

planta is consistent with our model for alternative sex determination in spinach through 

epistatic B-class repression by SpGAI.  These data suggest that SpGAI is able to bind SpLFY, 

likely at the DNA binding domain of SpLFY.  It is still unclear how the physical interaction 

between SpGAI and SpLFY prevents the initiation of SpAP3 and SpPI.  SpLFY possesses DNA 

and protein binding domains (Parcy et al., 1998; Hamès et al., 2008).  Our Y2H screen 

indicated the DNA binding domain of SpLFY is required for interaction with SpGAI however, 
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our assays did not address the protein binding domain either separately or in combination 

with the DNA binding domain.  DELLA transcription regulators are understood to bind 

transcription promoters preventing them from binding the cis-regulatory regions of target 

genes (De Lucas et al., 2008; Feng et al., 2008; Xu et al., 2016).  It is therefore possible that 

SpGAI binds to the DNA binding domain of SpLFY and sequesters it in such a manner to 

prevent SpLFY from activating transcription.  How this interaction prevents SpLFY from 

specifically initiating B-class, but not C-class expression is unclear and going forward the 

potential influence of B-class cis-regulatory DNA regions must be addressed. 

 It has been previously established that initiation of B-class transcription requires LFY 

and UFO activity (Lee et al., 1997).  Our consistent observation between the in vivo and in 

planta assays indicate that in spinach LFY and UFO can physically interact which agrees with 

previous observations in A. thaliana (Levin & Meyerowitz, 1995).  The data indicating that 

SpGAI and SpUFO physically interact was unexpected and only observed in planta.  UFO is an 

F-box protein and likely interacts with the Skp-cullin-Fbox (SCF) E3 ligase complex (Hershko 

& Ciechanover, 1998; Samach et al., 1999).  SCF is responsible for the poly-ubiquitination of 

protein targets which are then degraded by the 26S proteasome and this pathway of 

degradation is utilized to remove DELLA transcription factors (Fu et al., 2002; McGinnis et 

al., 2003; Dill et al., 2004).  Given that SpGAI, SpLFY and SpUFO all interact with each other 

it is tempting to suggest that SpGAI prevents SpLFY from activating the expression of B-class 

genes and this repression is lifted with the activity of SpUFO.  Although multiple allelic 

versions of SpUFO were identified in S. oleracea the alleles were not strongly correlated with 

sex (Naeger & Golenberg, 2016).  Additionally, 694 potential F-box genes have been 

identified in A. thaliana (Gagne et al., 2002).  Alternatively, SpGAI could bind to and sequester 



www.manaraa.com

105 

 

SpUFO preventing it from interacting with SpLFY, thereby prohibiting activation of the B-

class genes.  This repression could be lifted through the degradation of SpGAI via SCF-E3 

ligase with a thus far unidentified F-box intermediary.  Additional experimentation is 

required to distinguish between these possibilities. 

Determining the physical interactions between transcription factors of renowned 

importance in the process of flower determination and development will help the field as we 

move forward in characterizing the many complex interactions required for proper floral 

development.  The physical interactions observed between SpLFY, SpGAI, and SpUFO help 

refine our mechanism of sexual determination in spinach but the next step will be to observe 

these interactions in the context of DNA from the regulatory regions of the B-class genes.  

DELLA transcription factors have long been known to influence the process of flowering but 

typically though indirect mechanisms (De Lucas et al., 2008; Yu et al., 2012).  Our data 

indicating a direct interaction between SpLFY, the gene critical for integrating the signal to 

flower and initiating expression of organ identity genes, and SpGAI a member of the DELLA 

family of transcription factors, is the first of its kind.  These direct interactions provide 

another method of regulation for the critical process of flower development.  
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SpLFY P369Q F  ACATCAACAAACAGAAAATGAGGCACTAT 

SpLFY P369Q R TTTCTGTTTGTTGATGTATGTTGCTCCTG 

SpGAI.-9F   AGAAAAACAATGAAGAGGGAGCTA 

SpGAI.123R   CATCCCCCCGTCGTTTTG 

SpGAI.112delta178   CGACGGGGGGATGGAAGTCGCACAAAAGCTAGAAC 

GAI NSC Rev  ATCCGTGACGAATTGGCG 

BP AP3 NMB F  GCAGGCTTAATGCGGAACCACCACGTGTG 

BP SpAP3 NSC Rev  CAAGAAAGCTGGGTCAACCACATGATCCTGCACCAGC 

BP PI NMB F  GCAGGCTTAATGAGCCCCTCTACTCCG 

BP SpPI NSC Rev  CAAGAAAGCTGGGTCAACCACCCTTCCCTGTTGG 

BPSpGAIF        ACAAAAAAGCAGGCTTAATGAAGAGGGAGCTACCC 

BP SpGAI NSC Rev  CAAGAAAGCTGGGTCAACGTGACGAATTGGCGATTTGC 

BP LFY F GCAGGCTTAATGGATCAAGACCCGTTTAC 

BP SpLFY NSC Rev  CAAGAAAGCTGGGTCAACGAAAGGAAGATGGTGGG 

BpUFO F GCAGGCTTAATGGAAACTTTCAATGTTATC 

BP SpUFO NSC Rev  CAAGAAAGCTGGGTCAACACCACGAAAGGATCACC 

BPext F uni  GGGGACAAGTTTGTACAAAAAAGCAGGC 

BPext NSC Rev uni  GGGGACCACTTTGTACAAGAAAGCTGG 
Supplemental Table 4.1 – List of primers used to generate SpLFYp369q and SpΔDELLA mutants and 

Gateway clones.  All BP primer pairs designed to attach BP clonase recognition sites 5` of the start codon 

and 3` of the mutated stop codon, for all genes the stop codon was replaced with a valine codon. 

Supplemental Figure 4.1 – Yeast two hybrid interaction matrix on glucose and galactose YPD dropout 

plates.  Full interaction array of B42AD fusion and LexA fusion proteins.  Matings were planted on YPD 

–leu –his –ura –trp with with either glucose or galactose as a carbon source.  Glucose does not initiate 
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expression of fusion proteins and represent false positives.  Galactose activates expression and growth 

indicates interaction between proteins of interest. 
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CHAPTER 5 – CONCLUSIONS FUTURE DIRECTIONS 

The hermaphroditic flower is purposed to be the ancestral floral form and in this 

structure we see unparalleled morphologic diversity.  The most extreme alteration of floral 

form is dioecy, the complete segregation of sexual function into separate individuals.  The 

evolution of dioecy from a co-sexual ancestor is thought to be driven by sexual 

specialization and avoiding inbreeding by favoring outcrossing (Charlesworth & 

Charlesworth, 1978a; Charlesworth & Charlesworth, 1978b; Lloyd, 1980b).  Interestingly, 

many species that segregate gender function are observed to undergo sex reversals upon 

hormone application (Korpelainen, 1998).  This hormone influenced sexual flexibility is not 

restricted to dioecious species and different hormones illicit different sexual responses that 

are species specific.  Although monoecious, sex in melons is understood to be influenced by 

the phytohoromone ethylene and the genes involved and their interactions are well 

studied.  The three genes responsible for sex determination have been elucidated and 

found to be a WIP-like transcription factor (CmWIP 1) and the other two are involved in 

ethylene biosynthesis (CmACS-7, CmACS-11) (Boualem et al., 2008; Boualem et al., 2015).  A 

mechanism characterizing their interaction and the resulting sex has been demonstrated 

(Boualem et al., 2015).  However, it remains unclear how these upstream transcription 

factors and hormone biosynthesis genes interact with or influence the alternative 

expression of floral organ identity genes to produce unisexual flowers. 

Like ethylene in melons, gibberellic acid is important for sex determination in spinach 

(Chailakhyan, MK & Khryanin, V, 1978a).  Unlike melons, the genes responsible for sex 

determination have not been found but reliable markers have been created (Onodera et al., 
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2011; Kudoh et al., 2018).  Our lab has generated a mechanism linking the GA hormone 

response pathway and floral organ identity gene expression.  We have observed a unique 

function of spinach B-class genes; in addition to conferring stamen identity, the spinach B 

class foral identity genes also suppress gynoecium development (Sather et al., 2010).  My 

work has identified a link between the GA signaling pathway and B-class expression (West 

& Golenberg, 2018).  In spinach the expression of a member of the DELLA family of 

transcription regulators, SpGAI, antagonizes B-class expression.  When SpGAI expression is 

artificially reduced through either exogenous application of GA or VIGS mediated transient 

knockdown, B-class expression is elevated, and the individual is masculinized.  The inverse 

situation also holds true, when SpGAI is elevated by exogenous application of a GA-

synthesis inhibitor or application of a proteasome inhibitor, B-class genes are suppressed 

and the individual is feminized.  Sampling endogenous SpGAI expression from inflorescence 

tissue we found that females expressed roughly twice as much SpGAI when compared to 

males which agrees with our GA and SpGAI manipulation experiments.  This is the first sex 

determination mechanism directly linking a hormone response gene to the alternative 

development of floral organs.  The alternative expression of SpGAI during flower 

development seems to act like a switch governing which morphological pathway the 

individual will traverse.  To better understand this process, we investigated gender specific 

gene expression during floral development and screened potential physical interactions 

between transcription factors of interest. 

To identify the genes required to shape the unique floral morphology of male and 

female flowers we performed Illumina mediated RNAseq on the inflorescences of each sex.  

Transcriptome analysis revealed165 contigs that were enriched in male samples and 88 
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were identified via BLAST, among these were SpPI and SpAP3 whose expression is known 

to be male specific.  Characterization of the male specific transcripts continues along two 

paths, observation of location, intensity, and time of sex specific gene expression and 

transient knockdown of sex specific genes.  We generated a modified loop-mediated 

isothermal amplification (LAMP) protocol to apply LAMP detection of specific gene mRNAs 

to histological sections of male and female inflorescences.  This LAMP mediated in situ 

protocol was used to characterize the temporal and tissue specific expression of multiple 

genes identified in the RNAseq analysis.  These data shed light on the expression patterns 

of gender specific genes that result from sex determination in spinach.   

Alternative expression of SpGAI results in unisexual flower development.  Spinach 

floral development does not have a transient hermaphroditic phase suggesting SpGAI 

mediated sex determination occurs during the transition to flowering or soon thereafter.  

LFY is critical for flower development and known to activate the expression of flower organ 

identity genes (Schultz & Haughn, 1991; Huala & Sussex, 1992; Weigel et al., 1992).  Our 

model suggests that in females the presence of SpGAI specifically inhibits the activation of 

B-class but not C-class genes.  To explore the possibility of interaction between SpGAI and 

SpLFY we performed yeast two-hybrid and bimolecular fluorescence complementation 

screens.  In both experiments data indicate direct interaction between SpGAI and SpLFY, 

this represents the first observation of direct interaction between SpLFY and a member of 

the DELLA family transcription regulators.  In A. thaliana UFO is known to interact 

physically with LFY and this interaction is required for proper stamen development (Lee et 

al., 1997).  Both the Y2H and BiFC screens showed evidence of direct interaction between 

SpLFY and SpUFO.  Additionally, the BiFC analysis produced data indicating SpGAI and 
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SpUFO directly interact.  This interaction is particularly interesting as SpUFO is a F-box 

protein which is a component of the Skp-Cullin-Fbox complex that mediates protein 

degradation, including DELLA proteins.  Taken together and in the context of our 

mechanism for sex determination a number of possibilities begin to take shape.  It is 

unknown if SpUFO is required for B-class initiation in spinach as it is in A. thaliana.  If 

SpUFO truly is required for proper stamen initiation then SpGAI sequestration of this co-

factor would allow for specific inhibition of B-class genes without necessarily inhibiting the 

activation of C-class genes.  Although this explains specific B-class inhibition it does not 

address the interaction observed between SpGAI and SpLFY or the ramifications thereof.  

The direct interaction between SpGAI and SpLFY would be predicted to sequester SpLFY 

thus preventing SpLFY from initiating expression of its target genes.  Although possible, 

this direct sequestration motif does not seem plausible as it cannot explain how the SpGAI 

mediated sequestration of SpLFY prevents the activation of only the B-class genes but not 

C-class genes, one would expect SpLFY sequestration to prevent activation of both B- and 

C-class genes.  DELLA proteins do not have a canonical DNA binding domain but have been 

found in ChIP experiments, this is accomplished through intermediaries that bind the 

target DNA and the DELLA transcription factor (Sun, 2011).  In light of this, SpGAI could be 

localized to the cis-regulatory region of the B-class but not C-class genes through some 

unknown intermediary.  If localized to the B-class regulatory region in this manner SpGAI 

sequestration of SpLFY would then only affect B-class expression.  The interaction between 

SpGAI and SpUFO could be explained in the context of SpUFOs function in protein 

degradation.  SpGAI, anchored to the cis-regulatory region of B-class genes by an 

intermediary, binds to and sequesters SpLFY preventing it from activating the B-class 
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genes, SpUFO could then interact with and target SpGAI for degradation thus releasing 

SpLFY to initiate B-class expression.  However, we observe no allelic difference between 

SpUFO of male and female spinach and do not have any information on the potential sex 

specific expression of SpUFO.  Alternatively, if SpUFO is truly required for proper activation 

of spinach B-class genes then SpGAI mediated sequestration independent of SpGAI-SpLFY 

interaction would provide an additional point of control for SpGAI in the activation of B-

class genes.  The physical interactions observed do not force any major alterations of our 

purposed mechanism for sex determination in spinach but provide opportunity to further 

refine and clarify this regulatory architecture.    

To improve upon this body of work several experiments should be considered.  

Further refinement of our model of sex determination requires in vitro confirmation of 

SpGAI, SpFLY, and SpUFO interactions as well as in planta observations of all combinations 

performed in the yeast two-hybrid screen.  Additionally, the in vitro analysis can also 

incorporate cis-regulatory regions of both B-class genes to assess the requirement of native 

DNA for any interactions.  Pull down and identification of any proteins that associate with 

the cis-regulatory region of B-class genes may help clarify how SpGAI specifically prevents 

activation of these genes but not C-class targets.  Further assessment of the unique 

gynoecium suppression function previously observed in spinach B-class genes would help 

develop our model.  Utilizing CRISPER-Cas9 technology and A. thaliana transgenic 

protocols it is possible to replace AtAP3 and AtPI with spinach varieties and observe 

spinach B-class influence of A. thaliana gynoecium development.  Given the depth of 

research regarding A. thaliana flower development any perturbation of gynoecium 

development may have been observed before and could provide crucial insight to the gene 
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targets of SpAP3 and SpPI involved in carpel suppression.  Additionally, the transcriptomes 

of the SpAP3 and SpPI transgenics can be compared to published A. thaliana transcriptomes 

to identify any enriched or depleted genes.  The reciprocal experiment, transgenic spinach 

harboring A. thaliana B-class genes would certainly benefit our understanding of 

alternative sex development.  However, this would likely be much too time consuming to 

achieve as spinach transgenics are notoriously difficult and unlike A. thaliana there are no 

SpAP3 or SpPI mutant lines available thus they would have to be created, not to mention 

proper CRISPER-Cas9 mediated insertion of AtAP3 and AtPI.   

To advance our understanding of unisexual gene expression patterns in spinach a 

functional analysis must be undertaken.  Our current transcriptome is biased to identify 

overrepresented transcripts from male but not female samples.  Our model suggests sex 

determination functions in a switch-like manner, in which C-class gene expression initiates 

gynoecium development genes in females while in males, B- and C-class organ identity 

gene expression is initiated however, androecium genes then suppress gynoecium 

development.  Given this theory, we do not expect female specific genes with male 

suppressing function to be required for unisexual development, although our theory does 

not preclude this possibility.  However, our theory does require that B-class genes 

themselves, or some downstream gene that requires B-class activity have some gynoecium 

suppressing function and therefore could be found within our admittedly biased sample.   

The spinach transcriptome we produced found 165 transcripts overexpressed in male 

tissues and 88 were identified via BLAST search.  To advance this gynoecium suppressor 

hunt we should attempt to identify the remainder of the overrepresented transcripts as 
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well as begin a mass cloning strategy of all 165 genes into our VIGS vector pWSRi.  

Currently, 16 of the 165 genes have primers designed for pWSRi insertion and a fraction of 

the 16 have already been cloned into pWSRi as well as into pGEM T-ez.  Designing primers 

for the remaining genes and cloning into at least pWSRi would be an achievable, although 

time consuming goal.  It might be more time efficient to modify our pWSRi vector with 

BP/LR recognition domains thus allowing the use of the highly efficient gateway cloning 

method or perhaps more accurately, avoiding the hassles of restriction-ligation based 

cloning.  Once accomplished transient knockdown of all male-overrepresented genes 

becomes a possibility, any knockdown that fails to suppress the gynoecium would 

therefore be implicated in the process of carpel inhibition.  Additionally, reproducing male 

and female transcriptomes might be beneficial.  The initial results were male-biased and 

the tissues used to produce mRNA were harvested from flowers at different stages of 

development.  If RNAseq were to be repeated the developmental stage of the flower should 

be considered and young flowers prioritized however, this could be problematic as 

sequencing methods require samples have some minimum concentration.  Although 

RNAseq technology has improved significantly and the minimum concentrations required 

have been reduced, methods to maximize RNA yield as well as amplify mRNA in vitro 

should be considered.   

Why study the evolution and development of dioecy?  Compared to mammals, dioecy 

evolved quite recently in plants and evolved multiple times independently which allows a 

unique opportunity to explore multiple pathways that resulted in the evolution of 

unisexuality.  The ability to study the requirements and ramifications of unisexuality in the 

evolution of plant sex chromosomes could shed light on the evolution of sex chromosomes 
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in mammals and other unisexual organisms that we cannot test directly.  Identifying and 

analyzing the chromosomal regions responsible for sex determination and elucidating the 

genes that reside within these regions are critical for understanding the evolutionary history 

of sexual segregation.  In angiosperms sex determination via differential regulation appears 

to be common amongst monoecious and many dioecious species.  However, there is no 

complete mechanism linking confirmed sex determination genes to the differential 

expression of floral organ identity genes or genes responsible for sex organ suppression.  

Understanding the multiple ways this process can be achieved is an important aspect of our 

knowledge of plant development.  The mechanism for sex determination in spinach 

hypothesized here provides a regulatory framework that can explain previous observations 

and suggests a direct link between the GA hormone response pathway and floral 

development pathway.  However, we do not inform nor speculate about the identity of the 

sex determining gene(s).  Once identified it will be of great interest to challenge our 

mechanism for unisexual development in the context of the gene(s) responsible for sex 

determination. 
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 While unisexual flowers have evolved repeatedly throughout angiosperm families, the 

actual identity of sex determining genes has been elusive, and their regulation within 

populations remains largely undefined.  Additionally, sex liability is often observed in 

unisexual plants and has been correlated to external and internal cues, suggesting that the 

genes responsible for unisexual morphology are not necessarily segregating but rather 

differentially regulated.  Understanding these processes will be of significant theoretical and 

agronomical importance. 

 Cultivated spinach is a dioecious species in which an individual will bear alternative 

sexual organs.  Previous work has identified spinach B class floral organ identity genes, 

SpAP3 and SpPI, to have a novel function resulting in the suppression of gynoecium 

development.  We begin by testing the mechanism of the feminization pathway and its 

relationship to masculinization. Our results confirm earlier observations that exogenous 

applications of the plant hormone GA masculinize female flowers.  Furthermore, inhibition 
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of GA production and of proteasome activity feminizes male flowers.  These observations are 

consistent with the role of the GA in spinach sexual development however, when assessing 

the GA content of male and female inflorescences and flowers we observe no significant 

difference between the sexes.  We isolate and describe a single DELLA gene (SpGAI) in 

spinach.  DELLA proteins are repressive transcription factors responsive to GA.  Gene 

silencing of SpGAI in females allows activation of B class floral identity genes, and hence 

masculinization of female flowers.  Additionally, SpGAI is differentially expressed in female 

versus male flowers.  These results strongly implicate the role of SpGAI as a feminizing factor 

in spinach and suggest that the feminizing pathway is epistatic to the masculinizing pathway.  

We present a unified model for alternative sexual development in spinach and discuss the 

implications of such a model to established theory. 

 Our model predicts an interaction between SpGAI and SpLFY, a key transcription 

regulator involved in the transition from vegetative to floral growth.  To explore this potential 

interaction, we used Yeast 2 Hybrid in vivo and Bimolecular Complementation in planta to 

screen for physical interaction.  Preliminary results indicate a physical interaction occurs 

between SpGAI and SpLFY.  The aforementioned genes and processes address the initial steps 

of sex determination in spinach. To begin characterization of genes that are important for 

morphogenesis of unisexual flowers, we generate a transcriptome from male and female 

inflorescences.  Analysis revealed 165 differentially expressed transcripts, of which 88 could 

be identified by BLAST.  Candidate genes were chosen, and differential expression was 

confirmed with qRT‐PCR analysis.  Loop‐mediated isothermal amplification (LAMP) based in 

situ observation of genes identified as male specific as well as female specific were performed 

on spinach inflorescence sections.  The sex specific expression detected with in silico analysis 
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was confirmed in vitro with qRT‐PCR and in planta with LAMP mediated gene expression 

observation.   

 These studies represent important contributions to our understanding of sexual 

development in unisexual angiosperms.  There has been much difficulty identifying sex 

determining genes and despite great effort no such genes have been described in spinach.  

Our work identified differential SpGAI expression as critical for unisexual development and 

altering that expression through various methods has predictable results.  Combined with 

data previously generated in our lab we present a mechanism linking SpGAI expression and 

flower organ identity gene expression resulting in unisexual flowers.  The transcriptome and 

list of differentially expressed genes will be a useful resource to identify the genes 

responsible for the morphological differentiation between the sexes.  In the future candidate 

genes will be selected for functional testing using the VIGS based approach developed 

previously in our lab.   
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